
embed2discover: the NLP Tool for Human-In-The-Loop, Dictionary-Based
Content Analysis

Oleg Bakhteev1,3, Luis Salamanca2,3, Laurence Brandenberger 4, Sophia Schlosser4,

1EPFL, Switzerland 2ETHZ, Switzerland
3Swiss Data Science Center, Switzerland 4University of Zurich, Switzerland

Correspondence: oleg.bakhteev@epfl.ch

Abstract

Guided dictionary-based content analysis has
emerged as an effective way to process large-
scale text corpora. However, the reproducibility
of these analysis efforts is often not guaranteed.
We propose a human-in-the-loop approach to
dictionary-based content analysis, where users
get control over the training pipeline by chunk-
ing the process into four distinct steps. Com-
pared to end-to-end and/or purely LLM-based
approaches, where the learning and inference
process is difficult to understand and, hence,
to steer, we advocate for a human-in-the-loop
methodology. We demonstrate how, through
minimal labeling and intervention, the user can
guide the process and achieve competitive per-
formance. 1

1 Introduction

The use of machine learning (ML) and (large) lan-
guage models for the content analysis of text-based
data has grown in popularity (e.g., Ampel et al.,
2025; Grimmer et al., 2021; Zhao et al., 2025; Xiao
et al., 2023; Kroon et al., 2024), but researchers
are often wary of employing such methods for fear
of retrieving unreliable information (Jordan et al.,
2023; Chatsiou and Mikhaylov, 2020; Wilkerson
and Casas, 2017), in some cases without any in-
formation on the model’s true performance to as-
sess its validity. This could be quite hindering,
demeaning the validity of these approaches, es-
pecially when analysing text sources from really
specialized domains. In this paper, we introduce
embed2discover, a tool for dictionary-based, su-
pervised content analysis of (large-scale) text data.
Our tool assists human coders (henceforth called
‘users’) in discovering topics and themes in (large)
text corpora and classifying text excerpts by com-
bining methodologies from natural language pro-

1The code and demo can be found at https://gitlab.
renkulab.io/embed2discover/embed2discover.

Input & Setup

Import text corpus

Text Embedding

= {1, 0, 2.5, 1.2,−1, ..}

Training
Input & Setup

Import text corpus

Numerical representation

= {1, 0, 2.5, 1.2,−1, ..}

Step 1

Set dictionary Find similar words Expand dictionary

Step 2

Select sentences Cluster sentences Label clusters

Step 3

Classificationmodel Present sentence Annotate sentence

Step 4

Take all documents Classify all sentences Export sentences

biodiversity
biotope
ecosystem
habitat
species
…

biodiversity
forest biodiversity

agrobiodiversity

wild animal species

habitat protection
aquatic biodiversity

biotope
biotope inventory

plant species
stepping stone

ecological

biodiversity
agrobiodiversity
forest biodiversity
habitat protection

biotope
biotope inventory

…

…

cluster 1

cluster 2

.

.

not relevant

vaguely relevant

strongly relevant

n-times

Step 3.2 – 3.n

step 3.1

step 3.2
...

step 3.n

Output

Export labels

Training Step 1

Set dictionary Find similar words Expand dictionary

Training Step 2

Select sentences Cluster sentences Label clusters

Training Step 3

Classificationmodel Present sentence Annotate sentence

Training Step 4

Take all documents Classify all sentences Export sentences & labels

biodiversity
biotope
ecosystem
habitat
species
…

biodiversity
forest biodiversity

agrobiodiversity

wild animal species

habitat protection
aquatic biodiversity

biotope
biotope inventory

plant species
stepping stone

ecological

biodiversity
agrobiodiversity
forest biodiversity
habitat protection

biotope
biotope inventory

…

…

cluster 1

cluster 2

.

.

not relevant

vaguely relevant

strongly relevant

n-times

Step 3.2 – 3.n

step 3.1

step 3.2
...

step 3.n

Figure 1: Overview over embed2discover.

cessing (NLP) with language models and human
annotations.

With advances in text processing and increased
archival retrieval efforts, text-based data sources
have become increasingly popular. These data
sources are rich in information and offer valu-
able insights into both the author’s intent and the
broader context in which the text was created.
This surge in text availability has driven the de-
velopment of new tools and methodologies for ef-
ficient processing, organizing, cleaning, and clas-
sifying large-scale text data. A common approach
in this domain is content analysis, which enables
researchers to identify patterns and commonali-
ties within text-based data. For instance, scholars
have used content analysis to examine populist ele-
ments in political speeches (e.g., Jagers and Wal-
grave, 2007) or studying polarization dynamics
(e.g., Fisher et al., 2013). Traditionally, when such

mailto:oleg.bakhteev@epfl.ch
https://gitlab.renkulab.io/embed2discover/embed2discover
https://gitlab.renkulab.io/embed2discover/embed2discover


classifications serve as the foundation for further
research (e.g., Nussio and Clayton, 2024), exten-
sive codebooks have guided human annotators or
coders in categorizing text passages. However, as
the volume of text data continues to grow, manual
annotation reaches its limits, often necessitating
the use of computer-assisted or fully automated
content analysis. Despite these advancements, con-
cerns remain regarding the reliability and replica-
bility of automated content analysis, particularly
when (large) language models are involved (e.g.,
Nelson et al., 2021; Kitto et al., 2023). The issue
of replicability is especially challenging, as model-
driven classifications can be difficult to reproduce
without full transparency in their underlying pro-
cesses. Besides, the performance can substantially
vary between different domains.

We propose addressing concerns about reliability
and replicability by integrating computer-assisted
methods with a human-in-the-loop approach. Our
goal is to provide scholars with a tool for assisted
content analysis, ensuring that each step remains
subject to human judgment. embed2discover is
designed to combine the strengths of both worlds:
leveraging advanced NLP methods while incor-
porating efficient human annotations. The tool
enables users to hand-label meaningful sentences
within text data through a user-friendly interface,
progressively training a model to identify rele-
vant sentences (embedded in paragraphs) with in-
creasing accuracy. Fig. 1 provides an overview of
embed2discover. First, the user defines a set of
keywords related to the topic of interest to guide the
content analysis. The tool then facilitates the train-
ing of a classification model using active learning.
At each step, the user evaluates progress through
relevant metrics, guiding the content analysis in
the direction desired by the user. The output of
embed2discover can then serve as the foundation
for downstream analyses, uncovering insights into
both the originator and the broader context of the
text source under investigation.

2 Related Work

2.1 Dictionary-based Content Analysis

Traditionally, content analysis is performed as an
expert-guided, human annotation process, where
researchers devise (elaborate) coding schemes and
then proceed to process text data manually and

code the read text according to the schemes.2 To
speed up the hand-annotation process, computer-
assisted content analysis was developed. Early ap-
proaches focus on automated content classifications
(e.g., Andersen et al., 1992; Carley, 1994; Cowie
and Lehnert, 1996), computer-assisted identifica-
tion of grammatical patterns (e.g., Franzosi et al.,
2012), or topic extraction (e.g., Lee and Kim, 2008).
The promise of automated or semi-automated con-
tent analysis is increased efficacy, allowing re-
searchers to either broaden or deepen their analysis
through the use of expanding data sources (Lau-
rer et al., 2024; Chatsiou and Mikhaylov, 2020).
But fears potential users have to employ these tech-
niques revolve around replicability, validity, and
reliability of the coded results (Jordan et al., 2023;
Baden et al., 2022; Muddiman et al., 2019).

The concern with using automated content anal-
ysis is that both supervised and unsupervised meth-
ods usually classify text into predefined categories,
either using a dictionary (common in unsuper-
vised approaches) or hand-annotated texts (i.e., sen-
tences, paragraphs, or documents) (Wilkerson and
Casas, 2017). Whereas dictionary approaches have
considerably sped up the annotation process, they
are also heavily biased (Carley, 1990; Vourvachis
and Woodward, 2015; Van Atteveldt et al., 2021).
The biggest issue resides in the fact that dictionar-
ies are fixed words (or n-grams) that do not account
for (i) linguistic flexibility, (ii) linguistic changes
over time, and (iii) translation biases (Van Atteveldt
et al., 2021). For supervised methods, the user has
to set up a classification model and feed it with
hand-annotated texts and allow a model to learn
distinguishing characteristics from the text (i.e.,
existence of words, n-grams, linguistic structures).
Then, the supervised machine learning (SML) mod-
els generally assign weights to these distinguishing
characteristics and, given enough training data, can
assign categories to new texts based on the con-
tent and the learned weights (for applications, see
Hanna, 2013; King et al., 2013).

2.2 Known Shortcomings of Current Content
Analysis Tools

Several drawbacks make researchers weary of ap-
plying these unsupervised and supervised models
to classify text: (1) Coding schemes based on dic-

2Note that human annotation has been criticized in the
literature, especially when it comes to defining human anno-
tations as ‘gold standards’ and ‘ground truth datasets’ (e.g.,
Song et al., 2020; Mikhaylov et al., 2012).



tionaries limit the coded texts linguistically, do not
account for word changes over time (if temporal
data is used, see (Greene et al., 2019)), and restrict
the found texts. This is particularly problematic
for concepts that are fuzzy in nature or have ill-
defined boundaries, such as populism, inequality,
or biodiversity. (2) For supervised approaches, the
researcher does not know apriori how many labeled
texts it has to provide the SML in order to achieve
a high enough classification score, especially in
really unbalanced datasets. This makes the use of
SML methods less desirable, as it strengthens the
idea that these methods are unreliable and consti-
tute a ‘black box’. The latter argument holds es-
pecially true for generative LLMs (Huang et al.,
2025). (3) For supervised approaches, the re-
searcher has to define a clear coding scheme to
provide the labeled texts. Drafting these coding
schemes entails a lot of work.

3 Backend: The Mechanics Behind
embed2discover

3.1 Designing goals

The primary goal of embed2discover is to offer a
simple, reliable, and interpretable tool for content
analysis. The core design principles of our system
can be summarized as follows:

• Interpretability: The toolbox provides a
pipeline that takes, as its initial input, only a
small set of seed words and outputs a fully an-
notated corpus of sentences. To ensure trans-
parency and traceability, we prioritize simple
yet interpretable methods over more sophisti-
cated ones. Each step includes visualizations
and statistical summaries, helping users under-
stand and evaluate the pipeline’s performance.

• Efficiency: Our focus is on building a tool that
runs smoothly on any modern computer with-
out excessive resource consumption. Since
our toolbox requires intensive user interac-
tion, all steps must run efficiently, even for
large corpora. To achieve this, we prioritize
lightweight models whenever possible. We
precompute all word and sentence embed-
dings for the given corpus, allowing users to
run the toolbox without a GPU after embed-
dings are computed. Additionally, we use shal-
low classifiers as a baseline instead of deep
learning models and avoid language model
fine-tuning.

• Configurability and extensibility: The tool-
box is designed to be highly configurable.
Each step has its own configuration, repre-
sented by a YAML file. Users can modify con-
figurations for specific projects and training
sessions via the frontend application without
altering global settings or restarting the appli-
cation. The toolbox components—including
nearest neighbor retrieval, classification, clus-
tering methods, and active learning strate-
gies—can be implemented externally and in-
tegrated via configuration. This flexibility al-
lows users to extend the toolbox without need-
ing to inspect or modify its source code.

3.2 Input: The Text Corpus and Embeddings

User experiments in the toolbox are organized into
projects, where each project is associated with a
corpus and corresponding word and sentence em-
beddings. The toolbox also allows multiple parallel
experiments using the same corpus, with each ex-
periment contained within a separate project, main-
taining its own configuration and results. The text
corpus is structured as non-formatted text files,
with each document stored in an individual file
and assigned a unique ID. For text preprocessing,
i.e. word and sentence tokenization, we employ
the Spacy library (Honnibal et al., 2020). To sup-
port multilingual corpora, we employ the cld2 3

language detector to identify document language,
which guides language-specific preprocessing and
is also used as input for language-aware embed-
dings. Since the initial training steps operate at
the word level, obtaining high-quality word em-
beddings is crucial. In many cases, it is beneficial
to consider not only distinct word embeddings but
also phrase embeddings that account for short, fre-
quent phrases. For phrase extraction, we use the
Gensim library (Řehůřek and Sojka, 2011). The
phrase extraction parameters, including the maxi-
mum n-gram length and threshold, can be config-
ured during corpus upload.

The functionality of the toolbox is based on word
and sentence embeddings (Sahlgren, 2008). The
toolbox supports averaged word embeddings (Bom-
masani et al., 2020) derived from contextualized
sentence embedding models such as BERT (Devlin
et al., 2018). Regarding sentence embeddings, the
toolbox relies on the Sentence-BERT (Reimers and

3https://github.com/CLD2Owners/cld2 For the
Python version of the library, we use the package from
https://github.com/GregBowyer/cld2-cffi.

https://github.com/CLD2Owners/cld2
https://github.com/GregBowyer/cld2-cffi


Gurevych, 2019) library. The tool allows caching
embeddings for the target corpus, facilitating the
handling of large-scale document corpora without
wasting significant computational resources.

3.3 The Four Training Steps
The training process is divided into four steps (see
Fig. 1):

1. Dictionary Expansion: Expands the ini-
tial dictionary with additional domain-related
words and phrases.

2. Coarse Classification: Extracts sentences
containing dictionary words and clusters them
by semantic similarity. The user labels se-
lected clusters to create an initial dataset an-
notation.

3. Refined Classification: Trains the model iter-
atively using active learning, where the user la-
bels sentences tracking the increase of model
performance.

4. Full Classification: Trains a final model
based on previous labels and classifies all sen-
tences in the corpus.

For all the steps, we calibrate the algorithm’s hy-
perparameters (including k in KNN algorithm, clas-
sification model parameters, number of clusters in
K-means algorithm) automatically using Optuna
library (Akiba et al., 2019). Steps one, three, and
four involve training a classification model. For the
classification model, we mainly consider kernel lo-
gistic regression from (Pedregosa et al., 2011), but
any other classification model can be used. We also
perform model confidence calibration to make the
model confidence aligned with class probabilities.
This is important both from the perspective of con-
fidence interpretability and for the active learning
step 3, which utilizes the model confidence to filter
new sentences to annotate.

For the Dictionary expansion step, the user pro-
vides a set of initial keywords (i.e., a dictionary).
To expand the initial dictionary list with semanti-
cally similar words, we use a binary classification
model. It uses the word embeddings, treating the
dictionary and neighboring words as positive ex-
amples, and randomly sampled words as negative
ones. These are likely to be irrelevant given the
size of the full corpus vocabulary. The final selec-
tion threshold is determined via cross-validation.
This step also supports both individual words and
extracted phrases, as described in Section 3.2. The

user can control the expansion of the dictionary via
two key access points: (1) the model classification
probability threshold, controlling the confidence of
the model to add the words into the dictionary, and
(2) the relative frequency threshold, allowing to
discard too frequent words from the dictionary. In
practice, the user can select the confidence thresh-
old using cross-validation; the results of it are pro-
vided during the step run.

In the Coarse Classification step, we identify
all sentences containing words from the expanded
dictionary, compute their embeddings, and cluster
them using K-means. Semantically similar sen-
tences from user-selected clusters are then used
as the initial input for building the classification
model. The user then assigns labels to clusters
as strongly relevant, vaguely relevant, or not rele-
vant, see Fig. 6, Section A.1 in the Appendix. To
improve interpretability, we visualize clusters by
displaying centroid embeddings in a 3D space us-
ing Multi-Dimensional Scaling (MDS) (Borg and
Groenen, 2007), together with cluster homogeneity
and size (see Fig. 5, Section A.1 in the Appendix).

In Refine classification, the user is provided
with a set of sentences to label. After completing
one labeling round, the classification is updated.
By choosing a rather simple model, we retrain the
model from scratch after every round. We follow
standard approaches to active learning in selecting
the sentences for annotation. By default, we use
the following active learning strategy: (1) We esti-
mate a best classification model probability thresh-
old by F1-score using a cross-validation procedure.
(2) We take a pool of sentences with confidence
higher than the obtained threshold. (3) From this
pool, we select sentences with the highest confi-
dence, sentences with the lowest confidence, and
sentences randomly sampled from the pool. We
believe that this strategy allows users to rapidly
gather a representative annotated dataset. For later
stage iterations, the user can move to an active
learning strategy that promotes the annotation of
less confident sentences (Li and Sethi, 2006), use
the strategy described before, or switch between
the two. Note that, similar to other components, the
user can extend embed2discover with their own
strategies.

In Full classification, the user can apply the
classification to each sentence in the corpus. At
this step, the model is retrained from scratch using
the labels from the active learning step.

All steps in the pipeline support multilingual



embeddings, allowing users to work with corpora
in multiple languages simultaneously. Here, we
leverage the properties of multilingual embeddings:
for the Dictionary expansion step, we search for
neighbouring words with similar embeddings not
only in the target language but across all languages
selected by the user. The Coarse classification
step uses the expanded dictionary to retrieve rele-
vant sentences, thereby naturally supporting mul-
tilingual settings. For the Refined classification,
the user can annotate sentences in selected lan-
guages and then generalize the model to all lan-
guages present in the corpus during the Full clas-
sification step, again relying on the cross-lingual
capabilities of the embeddings.

3.4 Output: Fully-Labeled Corpus and
Classification Evaluations

embed2discover generates a classification output
at the sentence level. While the text corpus can
be imported as separate files (e.g., representing
distinct documents), the tool maintains sentence-
level classification for two key reasons: (1) Trans-
parency: Users can independently determine how
to classify a document based on the number or
proportion of positively identified sentences. (2)
Flexibility: By providing model probability scores,
the sentence-level output allows for further refine-
ment in subsequent analyses, if necessary.

In addition to the main output, embed2discover
generates output data at each intermediate step,
also capturing: the dictionary, the coarse classifica-
tion, and the annotated sentences. This facilitates
replication and enables further extensions and fu-
ture research. Moreover, each stage of the process
is accompanied by performance visualizations, in-
cluding: (1) hyperparameter optimization for all
the steps, (2) precision-recall evaluation, F1 and
F0.5 scores dependency from the threshold for the
dictionary expansion, refine classification and full
classification steps, (3) annotation progress track-
ing for the refine classification step. These features
ensure both interpretability and transparency, mak-
ing embed2discover a robust and trustable tool for
supervised content analysis.

4 Frontend: The Design of the
Web-Application

The frontend web interface is built using Flask 4

framework and implements three main views that
4https://flask.palletsprojects.com/en/stable/

support corpus handling, content analysis, and doc-
umentation and system settings. The communica-
tion with the backend is performed using REST
API, which allows the application of different sce-
narios of the toolbox usage. Overall, the frontend
has the following pages:

1. The Corpora page (Fig. 2) allows users to up-
load their own corpus or work with an existing,
openly-published corpus.

2. The Embedding page allows users to pre-
compute word and sentence embeddings for
the given corpus, required in subsequent steps.

3. The Project page allows users to modify ex-
isting projects or create new ones. Project-
setting includes the correspondence between
the used corpus and used embeddings. The
project page also allows to change the con-
figuration YAML file for the specific training
step.

4. The Training pages correspond to the four
training steps: dictionary expansion, coarse
classification, refined classification, and full
processing. Each page allows the user to se-
lect a project, adjust the configuration of each
step, run new experiments and look at previ-
ously obtained results.

5. The System page shows logs both for the back-
end and frontend and also allows users to kill
the training step currently running.

6. The Documentation page holds the documen-
tation of the tool, including instructions on
how to use the WebApp, or download the
toolbox to use it offline and allow a further
customization.

Figure 2: embed2discover frontend: a corpus page

https://flask.palletsprojects.com/en/stable/


5 Usage and Evaluation

In this section, we conduct a human study to eval-
uate embed2discover. First, we assess its recall
against 3,159 expertly annotated documents. Sec-
ond, we leverage embed2discover’s ability to la-
bel large-scale corpora more efficiently than expert
annotations and examine the quality of its coding
outputs. For all the experiments we use Swiss-
BERT language model (Vamvas et al., 2023) fine-
tuned on the text data from the Swiss Parliament
(Salamanca et al., 2024).

5.1 Testcase: Pursuits of the Swiss Parliament

Dataset description In order to evaluate the per-
formance of embed2discover, we use text data
from the Swiss Parliament (Salamanca et al., 2024).
The text corresponds to submitted parliamentary
pursuits, including interpellations, questions, mo-
tions, postulates, initiatives, and federal drafts. We
use the full text of the submitted pursuits, totaling
N = 94, 404 documents. To evaluate the perfor-
mance of embed2discover, we train a model to
identify parliamentary pursuits on the topic of pub-
lic service broadcasting. We detail results on par-
liamentary activity on public service broadcasting
in Switzerland between 1891 and 2024 in Section
A.3 in the Appendix.

Ground-truth annotation To assess the true re-
call capability of embed2discover, we annotated
3,159 documents related to the broader topic of
‘technology and communication’ through expert
annotation. Each of the 3,159 texts was assigned
a TRUE/FALSE label, indicating whether the doc-
ument’s main topic concerned the regulation of
Swiss public service broadcasting. The expert an-
notations were conducted by two political scien-
tists. We assessed their intercoder-reliability by
comparing 500 documents. Their agreement rate
was 98.5%, with a Cohen’s Kappa of 0.968.

Texts for which experts were uncertain were ex-
cluded from the analysis. Since the experts anno-
tated the bill texts independently of the annotation
performed using embed2discover, some bill texts
contained sentences that had already been anno-
tated in the toolbox. These bills were also excluded
from the evaluation. The final evaluation dataset
consisted of 2, 872 texts, all written in German.
The texts contain between 1 and 132 sentences,
with a median of 6 sentences. The proportion of
relevant bill texts in the corpus is 0.28.

5.2 Assessing Annotation Progress

We begin with the following German words
as our base dictionary: ‘Rundfunk’ ‘öffentlich
rechtlicher Rundfunk’ ‘SRG’ ‘RTS’ ‘SRF’ ‘RSI’
‘RTR’ ‘Radio und Fernsehen’ ‘Lokalradio’ ‘Re-
gionalfernsehen’ ‘Regional-TV’ ‘Service-public-
Auftrag’ ‘Schweizer Fernsehen SF’ ‘Schweizer
Radio DRS’ ‘Fernsehprogramm’ ‘Fernsehkanal’
‘Fernsehsendung’ ‘Sendekonzession’ ‘Rundfunk-
abgabe’ ‘Serafe’ ‘Billag’.

We expand the dictionary using the default
settings, resulting in 204 additional chosen
words, such as ‘Staatssender’, ‘Fernsehempfangs-
gebühren’, ‘Spartenprogramm’, ‘Programmproduk-
tion’ or ‘Beromünster’. In the second step, we eval-
uate 57 clusters, 12 of which are labeled as highly
relevant. We then perform 120 active learning steps,
38 of which use the least-confidence sampling strat-
egy.

During the refine classification step (step 3), the
user can evaluate their progress using three distinct
metrics and plots.

1. The progress graph (Fig. 3a) tracks the per-
centage of sentences labeled over the course
of active learning steps. The fluctuating nature
of the curves reflects the model’s sampling
strategy, where more uncertain or certain sam-
ples are prioritized for annotation.

2. The precision-recall curve (Fig. 3b) illustrates
the classifier’s trade-off between precision and
recall across different threshold levels, aver-
aged over 20-fold cross-validation. The high
precision-recall score suggests that the model
is effectively capturing relevant annotations
while minimizing false positives.

3. The F1 curve, (Fig. 4, Section A.1 in the Ap-
pendix) shows how the F1 score—balancing
precision and recall—varies across classifica-
tion probability thresholds, with the best F1
score highlighted.

These evaluations help the user assess annotation
progress and determine whether to proceed to step
4.

5.3 Performance evaluation

To assess the efficiency of embed2discover, we
compare our model against multiple baselines:



(a) Progress graph: Steps using the confident active label strat-
egy are shown in red, while steps using the least confident
strategy are shown in blue.

(b) Precision-Recall graph for the last annotation step.

Figure 3: Evaluation of Annotation Progress

• SML: We performed a 20-fold cross-
validation on the ground-truth dataset to eval-
uate how well the model would perform if a
portion of the dataset were annotated with-
out the assistance of embed2discover. In
this setting, we used the same embedding
model as in embed2discover but treated the
classification as a binary problem, in contrast
to embed2discover, which employs a three-
class classification scheme. Apart from this
difference, all other steps, including hyperpa-
rameter optimization, were conducted in the
same manner as in embed2discover. Since
we use the same number of annotated labels
here, we can estimate the impact of active
learning performed by embed2discover.

• LLM-d: LLM request using our initial dictio-
nary.

• LLM-z: LLM in a zero-shot mode (Brown
et al., 2020). In this mode, we described the
classification task to the LLM without provid-
ing any examples.

• LLM-o: LLM in a one-shot mode (Brown

et al., 2020). In this setting, we provided the
LLM with one example of pursuit texts for
each class and asked it to classify a new text.

For the LLM-based baselines, we employed
Llama-3.1-8B-Instruct (Grattafiori et al., 2024).
We intentionally used a relatively small LLM to en-
sure fair comparisons across models given the same
hardware constraints. Specifically, we used a GPU
with 16GB of memory, matching the hardware used
for embedding computation in embed2discover.
For some texts, the LLM failed to provide re-
sponses due to hallucinations or out-of-memory
issues. In such cases, we used ground-truth labels,
which may have slightly overestimated the perfor-
mance of the LLM-based baselines. A complete
list of LLM prompts can be found in Section A.2
in the Appendix.

In addition to the considered baselines, we eval-
uated multiple modes of embed2discover usage:

• coarse: In the coarse classification mode, we
used only the data obtained during the initial
coarse classification step without any active
learning iterations.

• final-b: In the final binary classifica-
tion, we utilized all annotations from
embed2discover for the ‘non-relevant’ and
‘strongly relevant’ classes to train a binary
classification model.

• final: Full classification model with all three
classes. The model is trained in a three-class
classification setting, the confidence scores of
the non-relevant and vaguely relevant classes
are combined into a single non-relevant cat-
egory. We then apply thresholds to distin-
guish only between ‘non-relevant‘ and ‘rel-
evant‘ sentences, which allows to match the
predictions with the annotated gold standard.

For all models, we computed precision, recall,
F1-score, and the approximate time required for
manual annotation. The results are presented in
Table 1.

Our model achieves a high recall of 0.89, suc-
cessfully identifying the vast majority of relevant
documents. A high recall is particularly important
in our case, as the primary objective is to maximize
the retrieval of relevant texts concerning the regu-
lation of Swiss public service broadcasting. While
the precision is lower (0.77), indicating that about



Model N Time,
hours

Prec. Rec. F1

SML 20 0.2 0.32 0.82 0.45
SML 1191 11 0.65 0.74 0.69
LLM-d 0 0 0.29 0.79 0.42
LLM-z 0 0 0.28 0.91 0.43
LLM-o - - 0.32 0.73 0.44

embed2discover
coarse 20 1.2 0.6 0.89 0.71
final-b 1191 3.6 0.77 0.89 0.82
final 1294 3.6 0.73 0.89 0.81

Table 1: Experiment results. The results for SML and
embed2discover models are averaged over 20 runs.
LMM-d refers to LLM with dictionary; LLM-z refers to
LLM zero-shot; LLM-o refers to LLM one-shot; final-b
refers to final binary. The “Time” column represents the
approximate time required for manual annotation using
each model. The “N” column indicates the number of
manually annotated items. We do not report the time
and number of manually annotated labels for LLM-o,
as they depend on the selection of in-context examples
and the example selection strategy.

212 out of 922 retrieved documents are false posi-
tives – this remains an acceptable trade-off within
our research context. At step 70, precision rates
were 0.65, while recall remained at around 0.8,
indicating that with longer training, a higher pre-
cision can be achieved through further annotation.
Since our approach prioritizes recall over preci-
sion, a certain level of false positives is tolerable,
as they can be efficiently filtered during manual
post-processing.

Compared to LLM-based methods, we observe
that our approach achieves significantly better pre-
cision. While LLMs may yield better results with
postprocessing, prompt tuning, or more sophisti-
cated methods than one-shot learning, our method
is more reliable because we monitor the behavior
of the models used at each step. The results also
show that the proposed approach is performing well
in comparison to the SML, which used the same
amount of data for training, and to the LLM-based
method.

5.4 Time and Efficiency

The manual annotation of the N = 3, 159 docu-
ments took 28 hours. This excludes the preparation
of the codebook and the pre-discussions and only
entails labeling work. Contrarily, the human an-
notation process using embed2discover for the

1, 294 texts took 3.6 hours, allowing us to automat-
ically annotate the entire corpus afterward. The
human annotation of the clustering step (57 clus-
ters) took 70 minutes. The annotation of ten sen-
tences per active learning step took 1-3 minutes
per step, amounting to 147 minutes of human an-
notation. The computational processing time on
embed2discover amounts to 45h. The dictionary
expansion step took 4.5 minutes, the coarse classi-
fication step took 2.5 hours, and the active learning
steps took between 5 and 40 minutes to update
the model and locate new sentences for the user to
label.

The toolbox was run on a server with 16 GB of
RAM and an 8-core CPU. Corpus preprocessing
and embedding computation took 6.5 hours, where
a 16 GB GPU was used for the latter.

6 Conclusion

We present embed2discover, a human-in-the-loop,
automated content analysis tool that enables users
to classify text data based on a dictionary-driven
approach. Our toolbox is designed to be fast, effi-
cient, and replicable. Besides, it provides a larger
level of interpretability by giving back the control
to the domain expert.

One of the biggest challenges social scientists
face when performing dictionary-based content
analysis using computational approaches is the in-
ability to fully replicate the procedure due to the
black-box nature of most tools. While such tools of-
fer rapid annotation and scalability for large-scale
corpora, the labeled data often lacks reliability for
downstream tasks.

embed2discover takes a different approach. By
breaking down the annotation process into four dis-
tinct steps and employing lean computational meth-
ods, the user maintains full control over the process
and can systematically evaluate the performance of
each step. We demonstrate the effectiveness of our
tool by classifying real-world documents from the
Swiss Parliament.

Future work includes integrating additional ac-
tive learning strategies, further optimizing com-
putational efficiency, and expanding user support
for argument mining and stance detection. We be-
lieve that embed2discover will serve as a valuable
tool for researchers seeking a transparent and inter-
pretable approach to automated text classification.



Limitations

While embed2discover offers a transparent and
replicable approach to dictionary-based content
analysis, certain limitations remain.

Replicability vs. Advanced Classification Mod-
els. Unlike black-box (large) language models
(LLMs), our toolbox prioritizes simple, inter-
pretable classification methods to ensure replicabil-
ity and user control. More advanced classification
approaches—such as transformer-based models or
GPT-based classifiers—could potentially enhance
classification accuracy. However, these methods
often sacrifice transparency, making it difficult for
users to trace and reproduce results. Besides, they
can highly underperform when the text comes from
really specific domains. To balance flexibility with
control, embed2discover allows users to swap out
classification models via configuration settings. We
encourage users to explore these options when pri-
oritizing speed or resource efficiency over strict
replicability. The toolbox configurability will also
enable it to keep up with emerging technologies by
allowing the integration of more powerful embed-
ding approaches.

Post-Annotation Analysis. embed2discover
does not provide currently built-in functionality
for post-annotation analysis. Users must export
labeled data for further processing in external
tools. Future versions of the toolbox may include
integrated support for common post-annotation
tasks, such as summary statistics, validation
checks, and visual analytics.

Multi-User Annotations and Inter-Annotator
Agreement. At present, embed2discover is de-
signed for individual use and does not natively sup-
port multi-user annotation workflows. Additionally,
we do not currently provide inter-annotator agree-
ment (IAA) measures to assess the consistency of
multi-user annotations. Extending the toolbox to
allow collaborative annotation and incorporating
IAA metrics would be valuable enhancements for
future development.

Acknowledgments

The authors would like to thankfully acknowledge
the funding through the SDSC Project C21-06
“EvolvingDemocrasci”.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining, pages 2623–2631.

Benjamin Ampel, Chi-Heng Yang, James Hu, and
Hsinchun Chen. 2025. Large language models for
conducting advanced text analytics information sys-
tems research. ACM Transactions on Management
Information Systems, 16(1):1–27.

Peggy M Andersen, Philip J Hayes, Steven P Weinstein,
Alison K Huettner, Linda M Schmandt, and Irene
Nirenburg. 1992. Automatic extraction of facts from
press releases to generate news stories. In Third
conference on applied natural language processing,
pages 170–177.

Christian Baden, Christian Pipal, Martijn Schoonvelde,
and Mariken AC G van der Velden. 2022. Three gaps
in computational text analysis methods for social sci-
ences: A research agenda. Communication Methods
and Measures, 16(1):1–18.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020.
Interpreting pretrained contextualized representations
via reductions to static embeddings. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4758–4781.

Ingwer Borg and Patrick JF Groenen. 2007. Modern
multidimensional scaling: Theory and applications.
Springer Science & Business Media.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems (NeurIPS 2020), 33:1877–1901.

Kathleen Carley. 1990. Content analysis. The encyclo-
pedia of language and linguistics, 2:725–730.

Kathleen Carley. 1994. Extracting culture through tex-
tual analysis. Poetics, 22(4):291–312.

Kakia Chatsiou and Slava Jankin Mikhaylov. 2020.
Deep learning for political science. The SAGE hand-
book of research methods in political science and
international relations, pages 1053–1078.

Jim Cowie and Wendy Lehnert. 1996. Information ex-
traction. Communications of the ACM, 39(1):80–91.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dana R Fisher, Joseph Waggle, and Philip Leifeld. 2013.
Where does political polarization come from? locat-
ing polarization within the us climate change debate.
American Behavioral Scientist, 57(1):70–92.



Roberto Franzosi, Gianluca De Fazio, and Stefania Vi-
cari. 2012. Ways of measuring agency: an applica-
tion of quantitative narrative analysis to lynchings
in georgia (1875–1930). Sociological Methodology,
42(1):1–42.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Kevin T Greene, Baekkwan Park, and Michael Colaresi.
2019. Machine learning human rights and wrongs:
How the successes and failures of supervised learning
algorithms can inform the debate about information
effects. Political Analysis, 27(2):223–230.

Justin Grimmer, Margaret E Roberts, and Brandon M
Stewart. 2021. Machine learning for social science:
An agnostic approach. Annual Review of Political
Science, 24:395–419.

Alexander Hanna. 2013. Computer-aided content anal-
ysis of digitally enabled movements. Mobilization:
An International Quarterly, 18(4):367–388.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, Adriane Boyd, et al. 2020. spacy: Industrial-
strength natural language processing in python.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2025.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems, 43(2):1–
55.

Jan Jagers and Stefaan Walgrave. 2007. Populism as
political communication style: An empirical study
of political parties’ discourse in belgium. European
journal of political research, 46(3):319–345.

Soren Jordan, Hannah L Paul, and Andrew Q Philips.
2023. How to cautiously uncover the “black box”
of machine learning models for legislative scholars.
Legislative Studies Quarterly, 48(1):165–202.

Gary King, Jennifer Pan, and Margaret E Roberts. 2013.
How censorship in china allows government criticism
but silences collective expression. American political
science Review, 107(2):326–343.

Kirsty Kitto, Catherine A Manly, Rebecca Ferguson,
and Oleksandra Poquet. 2023. Towards more replica-
ble content analysis for learning analytics. In LAK23:
13th international learning analytics and knowledge
conference, pages 303–314.

Anne Kroon, Kasper Welbers, Damian Trilling, and
Wouter van Atteveldt. 2024. Advancing automated
content analysis for a new era of media effects re-
search: The key role of transfer learning. Communi-
cation Methods and Measures, 18(2):142–162.

Moritz Laurer, Wouter Van Atteveldt, Andreu Casas,
and Kasper Welbers. 2024. Less annotating, more
classifying: Addressing the data scarcity issue of su-
pervised machine learning with deep transfer learning
and bert-nli. Political Analysis, 32(1):84–100.

Sungjick Lee and Han-joon Kim. 2008. News keyword
extraction for topic tracking. In 2008 fourth inter-
national conference on networked computing and
advanced information management, volume 2, pages
554–559. IEEE.

Mingkun Li and Ishwar K Sethi. 2006. Confidence-
based active learning. IEEE transactions on pattern
analysis and machine intelligence, 28(8):1251–1261.

Slava Mikhaylov, Michael Laver, and Kenneth R Benoit.
2012. Coder reliability and misclassification in the
human coding of party manifestos. Political Analysis,
20(1):78–91.

Ashley Muddiman, Shannon C McGregor, and Na-
talie Jomini Stroud. 2019. (re) claiming our expertise:
Parsing large text corpora with manually validated
and organic dictionaries. Political Communication,
36(2):214–226.

Laura K Nelson, Derek Burk, Marcel Knudsen, and
Leslie McCall. 2021. The future of coding: A com-
parison of hand-coding and three types of computer-
assisted text analysis methods. Sociological Methods
& Research, 50(1):202–237.

Enzo Nussio and Govinda Clayton. 2024. Introducing
the lynching in latin america (lyla) dataset. Journal
of Peace Research, pages 1–18.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Radim Řehůřek and Petr Sojka. 2011. Gen-
sim—statistical semantics in python. Retrieved from
genism. org.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint, arXiv:1908.10084:1–11.

Magnus Sahlgren. 2008. The distributional hypothesis.
Italian Journal of linguistics, 20:33–53.

Luis Salamanca, Laurence Brandenberger, Lilian
Gasser, Sophia Schlosser, Marta Balode, Vincent
Jung, Fernando Perez-Cruz, and Frank Schweitzer.
2024. Processing large-scale archival records: The
case of the swiss parliamentary records. Swiss Politi-
cal Science Review, 30(2):140–153.

Hyunjin Song, Petro Tolochko, Jakob-Moritz Eberl,
Olga Eisele, Esther Greussing, Tobias Heidenreich,



Fabienne Lind, Sebastian Galyga, and Hajo G Boom-
gaarden. 2020. In validations we trust? the impact
of imperfect human annotations as a gold standard
on the quality of validation of automated content
analysis. Political Communication, 37(4):550–572.

Jannis Vamvas, Johannes Graën, and Rico Sennrich.
2023. Swissbert: The multilingual language model
for switzerland. ArXiv Preprint:2303.13310, pages
1–15.

Wouter Van Atteveldt, Mariken ACG Van der Velden,
and Mark Boukes. 2021. The validity of senti-
ment analysis: Comparing manual annotation, crowd-
coding, dictionary approaches, and machine learning
algorithms. Communication Methods and Measures,
15(2):121–140.

Petros Vourvachis and Thérèse Woodward. 2015. Con-
tent analysis in social and environmental reporting
research: trends and challenges. Journal of Applied
Accounting Research, 16(2):166–195.

John Wilkerson and Andreu Casas. 2017. Large-scale
computerized text analysis in political science: Op-
portunities and challenges. Annual Review of Politi-
cal Science, 20(1):529–544.

Ziang Xiao, Xingdi Yuan, Q Vera Liao, Rania Abdel-
ghani, and Pierre-Yves Oudeyer. 2023. Support-
ing qualitative analysis with large language models:
Combining codebook with gpt-3 for deductive cod-
ing. In 28th Inter- national Conference on Intelligent
User Interfaces (IUI ’23 Companion), pages 27–31,
Sidney, NSW, Australia.

Chengshuai Zhao, Zhen Tan, Chau-Wai Wong, Xinyan
Zhao, Tianlong Chen, and Huan Liu. 2025. Scale:
Towards collaborative content analysis in social sci-
ence with large language model agents and human
intervention. arXiv preprint arXiv:2502.10937.

A Appendix

A.1 embed2discover interface

Figure 4: F1 graph

Figure 5: A visualization of the clustering results is
provided. For each cluster, we project its centroid em-
bedding into a 3D space. The size of the centroid point
reflects the number of sentences in the cluster, while
its color represents cluster heterogeneity, measured as
the average distance between cluster points and their
centroid.

Figure 6: An annotation for the refined classification
step.

A.2 LLM Prompts Utilized in the Experiment

LLM request using an initial dictionary

You are an AI model that
evaluates whether a given
text is relevant to a set
of keywords.

Instructions:

You will be given a set of
keywords and a text.

Respond with 1 if the text is
relevant to the keywords.

Respond with 0 if the text is
not relevant.

Output only 0 or 1, nothing
else.

https://doi.org/10.1146/annurev-polisci-052615-025542
https://doi.org/10.1146/annurev-polisci-052615-025542
https://doi.org/10.1146/annurev-polisci-052615-025542


Input Format:

Keywords: [{}]
Text: "{}"

Write only 0 or 1, don 't comment
answer.

LLM in a zero-shot mode

You are an AI model that
determines whether a given
text is about Public
Service Broadcasting (PSB).

Instruction:
Classify the text as 1 if it is

related to public service
broadcasting , or 0 if it is
not.

Classification Task:
- Text: "{}"

Write only 0 or 1, don 't comment
answer.

LLM in a one-shot mode

You are an AI model that
classifies whether a given
text belongs to category 1 or
0 based on provided examples.

Examples:
- Text: "{}"
- Label: {}

- Text: "{}"
- Label: {}

Classification Task:
- Text: "{}"

Write only 0 or 1, don 't comment
answer.

For each text to be classified, we randomly sam-
ple a pair of texts from different classes and insert
them into the prompt. The order of the classes in
the examples is selected randomly.

A.3 Public Service Broadcasting Debates in
the Swiss Parliament

The Swiss Parliament has addressed 851 parlia-
mentary pursuits related to public service broad-
casting over the past 130 years (see Fig. 7). The
first recorded pursuit on the topic dealt with the pro-
vided Sunday programs of the telephone broadcast
in the year 1905. With the founding of Switzer-
land’s first radio broadcasting company in 1931,
parliamentary discussions primarily focused on reg-
ulating the distribution network. The topic gained
traction in the 1970s, when debates emerged regard-
ing the financing of government-led broadcasting
studios. These discussions continued throughout
the 1980s, during which test runs were conducted
to allow commercial breaks during broadcasts.

In 1991, the Swiss Parliament approved the fed-
eral enactment draft on the structuring of the Swiss
broadcasting system. This reform triggered further
debates on financing through collection fees—first
via Billag and later through Serafe—as well as dis-
cussions on content neutrality, appropriateness, and
the governmental authority responsible for moni-
toring broadcasting standards.

In 2012, Swiss radio and television broadcast-
ing companies were merged into a single entity,
SRF, marking a significant structural change in the
national broadcasting landscape.



0

50

100

150

200

20
(1905−1908)

30
(1935−1939)

40
(1975−1979)

50
(2015−2019)

Legislative Period
(Years)

N
um

be
r o

f P
ur

su
its

Pursuit counts are aggregated over legislative periods
Number of Pursuits on Public Service Broadcasting

failed attempt to introduce 
women‘s rights

Women‘s strike

Swiss women demand equal 
pay, equal opportunities 
in education, no sexual 
harrassment, equality in care 
work, stricter punishment for 
violence against women.

Male voters grant 
women‘s rights

founding of the 
Swiss Radio Club

Male voters grant 
women‘s rights

Founding of the 
Swiss Radio Club

Founding of the 
Swiss Broadcasting 

Company

Concession granted 
for the installation 
of a digital audio 

broadcasting system

founding of the 
Swiss Radio Club

Restructuring and 
renaming of the 

Swiss 

End of support for 
VHF radio

color TV

end of support for 
VHF radio

Regular Swiss TV 
broadcasting

regular Swiss TV 
broadcasting

TV name 
change and 
additional 
channel

First broadcast of 
the consumer maga-

zine Kassensturz

Start of collection of 
radio/TV reception 

fees (Billag)

Federal Act 
on Radio and 

Television 

Fusion of Swiss 
radio and TV and 

renaming

Fusion of Swiss 
radio and TV and 

renaming

Figure 7: Distribution of public service broadcasting related pursuits in the Swiss parliament


	Introduction
	Related Work
	Dictionary-based Content Analysis
	Known Shortcomings of Current Content Analysis Tools

	Backend: The Mechanics Behind embed2discover
	Designing goals
	Input: The Text Corpus and Embeddings
	The Four Training Steps
	Output: Fully-Labeled Corpus and Classification Evaluations

	Frontend: The Design of the Web-Application
	Usage and Evaluation
	Testcase: Pursuits of the Swiss Parliament
	Assessing Annotation Progress
	Performance evaluation
	Time and Efficiency

	Conclusion
	Appendix
	embed2discover interface
	LLM Prompts Utilized in the Experiment
	Public Service Broadcasting Debates in the Swiss Parliament


