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Abstract

Modern approaches for table recognition con-
sist of an encoder for feature extraction and one
or more decoders for structure recognition and
cell box detection. Recent advancements in this
field have introduced Transformers, initially in
the decoders and more recently in the encoder
as well. While these improvements have en-
hanced performance, they have also increased
model complexity, requiring larger datasets for
training, a pre-training step, and higher infer-
ence time.

In this paper, we explore SLANet, a lightweight
transformer-free model originally trained on
PubTabNet. To train a more robust version,
we combined two publicly available datasets
(PubTabNet and SynthTabNet) into one dataset
of 1 million of images table, which led us to
name the resulting model SLANet-1M. On
PubTabNet, SLANet-1M improves the origi-
nal SLANet’s S-TEDS score by 0.35%. It
also scores only 0.53% below the state-of-
the-art UniTable Large, while using nearly 14
times fewer parameters. SLANet*—a variant
trained on PubTabNet and a quarter of Syn-
thTabNet— achieves a 0.47% improvement.
On SynthTabNet, SLANet-1M performs ex-
ceptionally well, with an S-TEDS score just
0.03% lower than UniTable Large. Addi-
tionally, SLANet-1M outperforms major large
vision-language models (VLMs) like GPT-4o,
Granite Vision, and Llama Vision on this spe-
cific table recognition task. SLANet-1M is
also more efficient during inference, offering
faster processing and CPU-friendly execution,
eliminating the need for a GPU.

1 Introduction

Tables contain a wealth of information in a concise
format and are prevalent in documents. Extracting
table information accurately is crucial for many ap-
plications (data analysis, finance, health, and so on).
The table recognition task focuses on detecting ta-
bles in image-based documents and extracting their

structure and contents in HTML format. However,
due to the complexity of tables—such as rowspan,
colspan, and multi-header layouts—table recogni-
tion remains a challenging task, even for advanced
large vision-language models (VLMs) like GPT-4o
(OpenAI, 2024), GPT-4-turbo (Yang et al., 2023),
Granite Vision 3.2 (Team et al., 2025), and Llama
Vision 3.2 (AI, 2025).

This paper presents a solution for companies that
require high-performance table recognition without
extensive computational resources. We enhanced
SLANet (Li et al., 2022) quantitatively and qualita-
tively by training it on additional data, demonstrat-
ing that a lightweight model without Transformers
can achieve performance comparable to more com-
plex transformer-based models. Furthermore, we
show that our improved SLANet is faster than state-
of-the-art (SOTA) models while maintaining high
accuracy.

We name this enhanced model SLANet-1M as
it is trained on 1 million images by combining
PubTabNet1 and SynthTabNet2 datasets.

2 Related works

Many recent models on table recognition task have
demonstrated great performance. Here we explore
some of them, in particular models that follow the
encoder-decoder architecture. We show that with
the introduction of Transformers, their structure
has adopted this technology firstly in the decoders
and subsequently in the encoder as well.

2.1 EDD

The Encoder-Dual-Decoder (EDD) model was in-
troduced in the PubTabNet paper (Zhong et al.,
2020). EDD consists of an encoder, an attention-
based structure decoder, and an attention-based cell
decoder. The use of two decoders stems from the

1https://github.com/ibm-aur-nlp/PubTabNet
2https://github.com/IBM/SynthTabNet

https://github.com/ibm-aur-nlp/PubTabNet
https://github.com/IBM/SynthTabNet


Figure 1: Architecture of SLANet.

observation that table structure recognition and cell
content recognition are distinct tasks that are ineffi-
cient to solve with a single attention-based decoder.

EDD’s encoder is a convolutional neural net-
work (CNN) that captures visual features from in-
put table images. The structure decoder and the
cell decoder are recurrent neural networks (RNNs)
equipped with an attention mechanism to process
and reconstruct the structure and content of the
table.

2.2 Table Master
Table Master (Ye et al., 2021) was introduced as a
solution for the ICDAR 2021 competition on sci-
entific literature parsing (Task B: table recognition
to HTML). Inspired by MASTER (Lu et al., 2021),
its decoder is composed of Transformer decoder
layers.

Table Master employs two decoder branches,
each consisting of three Transformer decoder lay-
ers, with the first layer shared between both
branches. One branch is responsible for predicting
the HTML sequence, while the other conducts box
regression. Unlike other models that split tasks at
the final layer, Table Master decouples sequence
prediction and box regression immediately after
the first Transformer decoder layer.

2.3 TableFormer
Introduced in the SynthTabNet paper (Nassar et al.,
2022), TableFormer employs an hybrid CNN-
Transformer architecture as encoder. The encoder
consists of a ResNet-18 CNN and a Transformer
encoder with two encoder layers, extracting fea-
tures from input images into a fixed-length feature
vector. TableFormer has two decoders: a structure
decoder, modeled as a Transformer decoder with
four decoder layers, incorporating multi-head atten-
tion and feed-forward networks (FFNs), and a cell

box decoder, which utilizes the same Transformer
encoder and decoder but introduces an additional
attention-based FFN block to refine cell-level pre-
dictions.

2.4 VAST

The Visual-Alignment Sequential Coordinate Table
Recognizer (VAST) (Huang et al., 2023) consists
of three primary components: a modified ResNet
enhanced with multi-aspect global content attention
as the CNN-based image encoder, a transformer-
based HTML sequence decoder, and a Transformer
block for coordinate sequence decoding, allowing
precise localization of table structures.

2.5 UniTable

UniTable (Peng et al., 2024) is the most re-
cent model in table recognition, introducing a
transformer-based encoder alongside a Trans-
former decoder. Initially, in an earlier attempt
(Huang et al., 2023), replacing the CNN encoder
with a vanilla Transformer with linear projection
led to a performance drop compared to models us-
ing CNN or hybrid CNN-Transformer encoders.

To address this issue, UniTable implements self-
supervised pre-training for the visual encoder.

2.6 SLANet

SLANet stands for Structure Location Alignment
Network, presented in PP-StructureV2 (Li et al.,
2022) as an efficient Table Recognition algorithm.
In Figure 1 we show the network architecture of
the model, composed of a backbone, a neck, and
a head. we provide a detailed description of the
architecture in Section 4.2.



3 Contribution

Our main contribution lies in adapting and eval-
uating the SLANet model (Li et al., 2022) on an
additional dataset to assess its generalization capa-
bilities and performance relative to state-of-the-art
(SOTA) methods. Detailed information on the im-
plementation and training procedure is provided in
Sections 6.1.1 and 6.1.2.

In addition, we extend prior work by evaluating
and comparing the inference time on CPU of some
of the models discussed in the previous section—an
aspect that has not been systematically analyzed in
their original studies.

4 Formulation and SLANet’s details

In this section, we define the table structure recog-
nition task and provide a detailed description of
the model we adopt for our experiments. We also
outline the loss functions used during training.

4.1 Task Definition
The objective of Table Recognition (TR) is to con-
vert a tabular image I into a structured, machine-
readable format T , capturing both its logical and
physical structure. The logical structure is often
represented in HTML format, denoted as a to-
kenized sequence S = [s1, ..., sT ], where each
s corresponds to an HTML tag. The physical
structure consists of the bounding box coordi-
nates of non-empty cells, represented as B =
[b1, ..., bN ], where each bounding box is defined
as b = (xmin, ymin, xmax, ymax), with integer values.
Additionally, C = [c1, ..., cN ] represents the tex-
tual content inside each cell, following a reading
order. While the number of elements in B and C
are the same, they are typically fewer than those
in S (N < T ), since the HTML sequence includes
both filled and empty cells. Each cell is associated
with a single bounding box and may contain either
a single line or multiple lines of text.

4.2 SLANet’s Architecture
4.2.1 Backbone
SLANet employs PP-LCNet (Cui et al., 2021) as
its backbone, a lightweight, CPU-friendly convo-
lutional neural network architecture. PP-LCNet
introduced several novel ideas to improve the accu-
racy without increasing the inference time. These
techniques can be summarize as follows:

• Better activation function; from ReLU to H-
Swish.

Figure 2: PP-LCNet. PP-LCNet includes optional mod-
ules, indicated by the dotted box. The stem section
utilizes a standard 3×3 convolution. DepthSepConv
refers to depth-wise separable convolutions, where DW
stands for depth-wise convolution, PW denotes point-
wise convolution, and GAP represents Global Average
Pooling.

• SE (squeeze-and-excitation) modules (Hu
et al., 2018) at appropriate positions.

• Larger convolution kernels; replacing the 3x3
convolutional kernels with the 5x5 convolu-
tional kernels only at the tail of the network.

• Larger dimensional 1x1 conv layer after GAP;
to give the network a stronger fitting ability
and allow for more storage of the model with
little increase of inference time. PP-LCNet
appended a 1280-dimensional size 1x1 conv
(equivalent to FC layer) after the final GAP
layer.

PP-LCNet uses DepthSepConv (Howard et al.,
2017) as its basic block, the architecture is shown
in Figure 2. Depthwise Separable Convolution is
a good alternative to the classic convolution, as it
can reduce the complexity and improve the infer-
ence speed of the operation while maintaining the
accuracy. With all these improvements, PP-LCNet
achieves better performance on multiple tasks with
respect to lightweight models such as ShuffleNetV2
(Ma et al., 2018), MobileNetV3 (Howard et al.,
2019), and GhostNet (Han et al., 2020).

4.2.2 Neck
SLANet enhances feature fusion to effectively ad-
dress challenges caused by scale variations in com-
plex scenes. To achieve this efficiently, it utilizes
CSP-PAN (Yu et al., 2021), which integrates the
PAN (Path Aggregation Network) structure for
multi-level feature extraction and the CSP (Cross
Stage Partial) structure for feature concatenation
and fusion between adjacent feature maps.



Path Aggregation Network (PAN) (Liu et al.,
2018) improves the feature pyramid by enhancing
localization accuracy and optimizing information
flow. It introduces:

• Bottom-up path augmentation, which shortens
the information path and strengthens low-level
features with precise localization signals.

• Adaptive feature pooling, which aggregates
features across all levels for each proposal, en-
suring a more structured and efficient feature
propagation while avoiding arbitrary assign-
ments.

These enhancements create more efficient and
structured feature pathways, improving feature
fusion and ultimately boosting detection perfor-
mance.

Cross Stage Partial (CSP) Structure (Wang
et al., 2020) is designed to enhance gradient flow
while reducing computational cost. It achieves this
by splitting the base layer’s feature map into two
parts and merging them through a cross-stage hier-
archy. By dividing the gradient flow into separate
network paths, CSP ensures that the propagated
gradient information exhibits a greater correlation
difference, improving learning efficiency through
alternating concatenation and transition steps.

To optimize efficiency further, SLANet reduces
the output channels of CSP-PAN from 128 to 96,
effectively decreasing the model size without com-
promising performance.

4.2.3 Head
In its head module, SLANet employs a GRU along
with two key components: the Structure Decode
Module (SDM) and the Cell Location Decode
Module (CLDM). The result of the feature fusion
is passed in the GRU, and at each step, the GRU’s
output is concatenated and passed to both SDM
and CLDM, generating cell tokens and their corre-
sponding bounding box coordinates.

SLANet ensures one-to-one alignment between
cell tokens and their coordinates, with SLAHead
responsible for maintaining this correspondence.
The tokens and coordinates from all decoding steps
are concatenated to construct the HTML table rep-
resentation along with the precise coordinates of
all cells.

Inspired by TableMaster (Ye et al., 2021),
SLANet treats <td> and </td> as a single token
(<td></td>), simplifying the tokenization process
for table structure generation.

Figure 3: An example image from PubTabNet.

4.3 Loss Functions
The total loss function consists of two components:
structure loss and localization loss, combined as:

Ltotal = λstructureLstructure + λlocLloc

This combined loss ensures the model effectively
learns both table structure and bounding box local-
ization.

4.3.1 Structure Loss
The structure loss measures the accuracy of table
structure predictions using the cross-entropy loss:

Lstructure = − 1

K

K∑
i=1

T∑
j=1

yi,j log(ŷi,j)

where K is the batch size, T is the sequence
length, yi,j is the ground truth token, and ŷi,j is the
predicted probability.

4.3.2 Localization Loss
The localization loss evaluates bounding box accu-
racy using the SmoothL1 loss:

SmoothL1(x) =

{
0.5 x2, if |x| < 1

|x| − 0.5, otherwise

where x = bi,j − b̂i,j .
The localization loss is normalized as:

Lloc =

∑
i,j SmoothL1(bi,j − b̂i,j) ·mi,j∑

i,j mi,j + ϵ

where ϵ > 0 prevents division by zero, bi,j =
(xmin, ymin, xmax, ymax) is the ground truth bound-
ing box, b̂i,j is the predicted bounding box, and
mi,j is a mask for valid bounding boxes.

5 Datasets and Metrics

5.1 Datasets
In this paper, we explore two publicly available ta-
ble structure recognition benchmark datasets: Pub-
TabNet and SynthTabNet.



5.1.1 PubTabNet

The PubTabNet (Zhong et al., 2020) dataset con-
sists of 509,892 annotated PNG images (500,777
for training and 9,115 for validation). Each table
is annotated with its structure in HTML format,
along with tokenized text and bounding boxes for
each cell. As shown in Figure 3, the dataset primar-
ily contains simpler table structures with relatively
few rows and columns. Additionally, the dataset
exhibits limited variation in table styles, which hin-
ders model generalization to unseen table formats.
Recognizing these limitations, the authors of Table-
Former introduced SynthTabNet to address these
issues.

5.1.2 SynthTabNet

SynthTabNet (Nassar et al., 2022) is a large-scale
synthetically generated dataset designed to offer
control over dataset size, table structures, table
styles, and content types.

The dataset aims to overcome the shortcomings
of PubTabNet and FinTabNet, which suffer from
skewed distributions toward simpler tables, limited
stylistic diversity, and restricted cell content types.
SynthTabNet consists of 600,000 tables, divided
into four 150,000-table subsets:

Finance (1) and PubTabNet (3), which mimic
FinTabNet3 and PubTabNet while incorporating
more complex structures. Marketing (2), which
features high-contrast, colorful tables that resem-
ble real-world marketing documents as shown in
Figure 4. Sparse (4), which contains tables with
minimal content, testing model performance on in-
complete or sparsely populated tables. All parts
are divided into Train, Val, and Test splits (80%,
10%, 10%). Because SynthTabNet provides a com-
prehensive evaluation of table recognition models
across diverse table structures, we use it for abla-
tion studies and present results separately for each
subset.

5.2 PubTables-1M

Although we did not use PubTables-1M (Smock
et al., 2022) in our experiments, we include it here
as it is one of the largest table recognition (TR)
datasets. PubTables-1M comprises nearly one mil-
lion tables extracted from scientific articles, sup-
ports multiple input modalities, and provides de-
tailed header and location information for table

3https://developer.ibm.com/data/fintabnet/

Figure 4: An example image from SynthTabNet (Mar-
keting subset).

structures. These features make it a valuable re-
source for various modeling approaches.

However, as noted by UniTable (Peng et al.,
2024), PubTables-1M suffers from several inconsis-
tencies, particularly in its annotation method. The
dataset uses word-wise bounding box (bbox) an-
notations, whereas PubTabNet and SynthTabNet
follows a cell-wise annotation approach.

• Cell-wise annotation assigns a single bbox per
table cell, allowing for a direct mapping be-
tween non-empty cells and their correspond-
ing HTML structure.

• Word-wise annotation, used in PubTables-1M,
assigns a bbox to each individual word, mak-
ing it challenging to integrate with the table
structure as effectively as cell-wise annota-
tion.

This fundamental difference limits the general ap-
plicability of PubTables-1M for certain table recog-
nition tasks.

5.3 Metrics
5.3.1 Accuracy
Used during the training the accuracy refers to the
proportion of correctly identified table elements
(such as structure, cells, or text) compared to the
total number of ground truth elements. It measures
the effectiveness of a table recognition system in
correctly detecting and extracting tables from doc-
uments.

It is defined as:

Acc. =
Numb. of Correctly Recognized Elements
Total Numb. of Ground Truth Elements

5.3.2 TEDS
TEDS (Tree-edit-distance-based Similarity), intro-
duced by PubTabNet (Zhong et al., 2020), con-
verts the table into a tree structure in HTML format

https://developer.ibm.com/data/fintabnet/


and measures the edit distance between the pre-
diction Tpred and the groundtruth Tgt. A shorter
edit distance indicates a higher degree of similarity,
leading to a higher TEDS score. TEDS measures
both the table structure and table cell content. We
also use S-TEDS as metric where only the table
structure is considered. For comparison we con-
sider more S-TEDS because for the content of cells
some models rely on external text detection and text
recognition models, which can differ from model
to model and so can compromise the comparison.

TEDS between two trees is computed as:

TEDS = 1−
EditDist(Tgt, Tpred)

max(|Tgt|, |Tpred|)
(1)

where EditDist denotes tree-edit distance (Pawlik
and Augsten, 2016), and |T | is the number of nodes
in T .

Datasets Records Size (GB)
Name Train Val Train Val
PubTabNet 500,777 9,115 11.6 0.2
SynthTabNet 480,347 59,618 24.2 3.0
Merged 981,124 68,733 35.8 3.2

Table 1: Dataset details including records and sizes for
training and validation for SLANet-1M.

Models Datasets
PubTabNet SynthTabNet 3

SLANet 76.35 17.21
SLANet* 77.07 81.72

Table 2: Results (accuracy) of the first experiment,
SLANet is the original model trained on PubTabNet,
and SLANet* is the model trained on both PubTabNet
and SynthTabNet part 3.

Models Datasets
PubTabNet SynthTabNet 3

TEDS S-TEDS TEDS S-TEDS
SLANet 95.89 97.01 89.01 95.65
SLANet* 95.83 97.48 92.87 99.47

Table 3: Results (TEDS and S-TEDS) of the first ex-
periment, SLANet is the original model trained on Pub-
TabNet, and SLANet* is the model trained on both
PubTabNet and SynthTabNet part 3.

6 Experiments and Results

6.1 Experiments

6.1.1 Implementations
We conducted two setup experiments, both on a
48G A40 GPU device, during 50 epochs using
Adam as optimizer, the initial learning rate is set to
0.001 and adjusted to 0.0001 and 0.00005 after 29
and 39 epochs. The batch size is set to 48 for the
first experiment and to 72 for the second.

6.1.2 Training
For the first experiment we trained SLANet from
scratch on the PubTabNet and the third part of Syn-
ThTabNet for a total of 620,772 images for the
training set, validate on the validation set of Pub-
TabNet and tested on the same set because there is
no the groundthruth fot the test set of PubTabNet.

For the second experiment we merged both
datasets (PubTabNet and SynthTabNet) as detailed
in Table 1. The validation set is obtained by merg-
ing all the validation sets of subsets of SynthTabNet
with the validation set of PubTabNet. The tests are
made on the test sets of SynthTabNet subsets.

6.2 Results

6.2.1 First Experiment
The model obtained with the first training setup
is named SLANet* and the Table 2 and Table
3 summarize the performance of SLANet and
SLANet* across PubTabNet and SynthTabNet (Part
3). SLANet*, trained on both datasets, consistently
outperforms the original SLANet. On PubTabNet,
SLANet* achieves a slight 0.72% improvement
in accuracy while maintaining comparable TEDS
performance and a 0.47% increase in S-TEDS.

The performance boost is more pronounced
on SynthTabNet (Part 3), where SLANet* sig-
nificantly surpasses SLANet, improving accuracy
from 17.21% to 81.72%. Additionally, it demon-
strates a substantial increase in TEDS (+3.86%)
and S-TEDS (+3.82%), confirming its enhanced
adaptability when trained on a more diverse dataset.

Table 4 compares SLANet* to state-of-the-art
models on PubTabNet. Despite having signifi-
cantly fewer parameters —nearly 14 times fewer
than the strongest models — SLANet* achieves
competitive performance. It is only 0.41% on
S-TEDS score behind the SOTA UniTable Large,
demonstrating its efficiency and effectiveness in
the table recognition task.



Models TEDS S-TEDS SIZE (M)
EDD (Zhong et al., 2020) 88.30 89.90 -
TableMaster (Ye et al., 2021) 96.12 97.56 253
TableFormer (Nassar et al., 2022) 93.60 96.75 53.2
VAST (Huang et al., 2023) 96.31 97.23 -
UniTable Base (Peng et al., 2024) 94.78 95.63 30
UniTable Large (Peng et al., 2024) 96.50 97.89 125
SLANet (Li et al., 2022) 95.89 97.01 9.2
SLANet* (ours) 95.83 97.48 9.2

Table 4: Comparison on PubTabNet of models based on TEDS, S-TEDS, and SIZE.

Models S-TEDS Size (M)
TableFormer 96.70 53.2
UniTable Base 98.97 30
UniTable Large 99.39 125
SLANet-1M 99.36 9.2

Table 5: Comparison of performance on SynthTabNet.

6.2.2 Second Experiment

In the second experiment, we trained SLANet on
the consolidated dataset detailed in Table 1. The
resulting model, referred to as SLANet-1M, demon-
strates strong performance on the SynthTabNet
benchmark, as illustrated in Table 5. In particu-
lar, SLANet-1M lags behind UniTable Large by
a mere 0.03%, despite possessing approximately
14 times fewer parameters. It is important to
highlight that UniTable Large benefits from a sig-
nificantly broader training regimen—having been
trained on PubTabNet, SynthTabNet, and FinTab-
Net for table recognition, in addition to undergoing
a pre-training phase on PubTabNet, SynthTabNet,
FinTabNet, and PubTables-1M.

6.2.3 Ablation Study

Table 6 presents an ablation study comparing the
S-TEDS scores of UniTable, SLANet, SLANet*,
and SLANet-1M across the four subsets of the
SynthTabNet dataset. As expected, SLANet-1M
outperforms both SLANet and SLANet* on all
the three other subsets, given that it was explicitly
trained on these data partitions. Notably, SLANet-
1M also demonstrates a modest improvement of
0.05% on the PubTabNet subset of SynthTabNet.

When compared to UniTable Large, SLANet-
1M achieves superior performance on the Mar-
keting subset with a 0.14% lead and matches
UniTable’s score on the Sparse subset. On the
PubTabNet subset, it trails slightly by only 0.04%.

The most pronounced difference is observed on
the Finance subset, where SLANet-1M falls be-
hind UniTable Large by 0.23%—this being the
only subset where UniTable Base also surpasses
SLANet-1M, albeit by a smaller margin of 0.06%.
This performance gap can likely be attributed to
UniTable’s broader training scope, as it was trained
on a more diverse set of datasets, including FinTab-
Net, which may contribute to its enhanced general-
ization on financial tables.

7 Qualitative Results and Inference Time

7.1 Qualitative Results

In this section, we present a qualitative analysis
by first comparing SLANet-1M with the original
SLANet, followed by a comparison with several
large vision-language models (VLMs). One rep-
resentative sample per configuration was retained.
Additional examples can be found in the appendix.

7.1.1 SLANet vs SLANet-1M
Figure 5 illustrates the inputs provided to both
SLANet and SLANet-1M, along with the corre-
sponding HTML tables generated by each model.
As shown, SLANet encounters difficulties in accu-
rately identifying and separating the correct num-
ber of rows. In contrast, SLANet-1M success-
fully overcomes this limitation, generating a well-
structured HTML table that clearly delineates rows,
even in cases where they are not explicitly wired in
the input.

7.1.2 SLANet vs VLMs
Following the approach of UniTable (Peng et al.,
2024), we conduct a qualitative comparison be-
tween our model and several state-of-the-art large
vision-language models (VLMs). Figure 6 presents
the input image alongside the outputs generated
by SLANet-1M, GPT-4o (OpenAI, 2024), Granite



Models Finance Marketing PubTabNet Sparse
UniTable Base (Peng et al., 2024) 99.41 98.35 99.44 98.69
UniTable Large (Peng et al., 2024) 99.58 99.08 99.56 99.34
SLANet (Li et al., 2022) 89.83 80.83 95.65 86.10
SLANet* (ours) 91.26 82.99 99.47 91.33
SLANet-1M (ours) 99.35 99.22 99.52 99.34

Table 6: Comparison across different subsets of SynthTabNet dataset.

(a) Input table image extracted from PdfTable (Sheng
and Xu, 2024).

(b) SLANet-1M’s output.

(c) SLANet’s output.

Figure 5: Qualitative comparison between SLANet and
SLANet-1M.

Vision 3.2 (Team et al., 2025), and Llama Vision
3.2 (AI, 2025).

We adopt the same prompt used in UniTable
(Peng et al., 2024) and in the evaluation of the
Optical Character Recognition (OCR) capabilities
of GPT-4V (Shi et al., 2023): “Please read the
table in this image and return an HTML-style re-
constructed table in text. Do not omit anything.”

The results show that SLANet-1M outperforms
GPT-4o, which fails to preserve the correct number
of rows and introduces unnecessary blank spaces
and empty cells. In contrast, SLANet-1M more
faithfully maintains the table’s structural integrity.

Among the baseline VLMs, Granite Vision 3.2 per-
forms the best, although it misplaces the content of
the first cell by rendering it in the last cell of the
first row. Llama Vision 3.2 simplifies the output by
reducing the table to just two columns, revealing
its limitations in handling complex table structures.

One qualitative result is shown here; more quan-
titative and qualitative results are in Appendices A
and B, respectively.

7.2 Inference Time
One of the main objectives of this research was to
provide an alternative to transformer-based table
recognition models—one that achieves similar per-
formance while remaining efficient enough to run
on a CPU with a satisfactory inference time.

All the models cited in this paper overlook this
aspect. To address this, we compared the inference
time of SLANet-1M (which is essentially the same
as SLANet) against two state-of-the-art models:
TableFormer and UniTable Large. The evaluation
was conducted on a CPU-powered system with the
following specifications:

• Processor: 11th Gen Intel(R) Core(TM) i7-
11850H @ 2.50GHz, 2496 MHz, 8 Cores, 16
Logical Processors.

• Memory: 32.0 GB RAM.

• System Type: x64-based PC.

• Dataset: 200 images (50 images per subset).

The Docling technical report (Auer et al., 2024)
highlights that TableFormer suffers from high infer-
ence time on CPU due to its reliance on EasyOCR4,
a finding that our experiments confirmed. Specifi-
cally, TableFormer exhibited an average inference
time of 10,020 milliseconds, while UniTable Large
was even slower, likely due to its fully transformer-
based architecture, with an average inference time
of 118,729 milliseconds. In contrast, SLANet-1M

4https://github.com/JaidedAI/EasyOCR

https://github.com/JaidedAI/EasyOCR


(a) Input table image.

(b) SLANet-1M’s output.

(c) GPT-4o’s output.

(d) Granite Vision’s output.

(e) Llama Vision’s output.

Figure 6: Qualitative comparison between GPT-4o,
Granite Vision, Llama Vision and SLANet-1M.

significantly outperformed both models, achieving
an average inference time of less than 500 millisec-
onds. The inference time refers to the time required
to process the table, generate the HTML code, and
save the result in Excel or CSV format.

8 Conclusion

In this paper, we evaluate SLANet on a new dataset
and introduce SLANet-1M, a model trained on one
million table images. We demonstrate both quan-
titatively and qualitatively that SLANet-1M out-
performs SLANet and competes effectively with
transformer-based architectures, and VLMs.

When trained on PubTabNet and the third subset

Models Inf. Time (ms) Size (M)
TableFormer 10,020 53.2
UniTable Large 118,729 125
SLANet-1M 463 9.2

Table 7: Comparison of inference time on CPU.

of SynthTabNet, SLANet* achieves an S-TEDS
score on PubTabNet that is only 0.41% lower than
the state-of-the-art (SOTA), despite using 14 times
fewer parameters. When trained on PubTabNet and
all subsets of SynthTabNet, its S-TEDS score on
SynthTabNet is just 0.03% below SOTA, maintain-
ing the same efficiency.

Additionally, SLANet-1M offers faster inference
time while being CPU-friendly, with only 9.2 mil-
lion parameters. This makes it an ideal solution for
users seeking a high-performance model without
significant computational demands. Finally, we de-
ployed SLANet-1M in the core engine of the Swiss
AI center, making it accessible for those interested
in testing it, it can be accessed here.

Limitations

Despite its many strengths, SLANet-1M does ex-
hibit certain limitations. The most prominent
among these is its dependence on external mod-
els for text detection and recognition. Addition-
ally, due to its use of lightweight components, the
quality of its predicted bounding boxes falls short
compared to some state-of-the-art models in table
recognition. Furthermore, since the majority of the
training data comprises wireless tables, SLANet-
1M encounters minor challenges in accurately inter-
preting the structure of fully wired tables. Notably,
the latter limitation could be effectively mitigated
through training on a more diverse and representa-
tive dataset.
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A Quantitative comparison with VLMs

Model Finance Marketing PubTabNet Sparse
Number of Samples

10 50 10 50 10 50 10 50
Llama Vision 3.2 53.80 43.17 37.02 41.22 49.83 46.31 23.23 30.66
Granite Vision 3.2 76.30 72.40 58.54 58.82 81.04 80.04 46.04 40.10
SLANet-1M (ours) 99.50 99.48 99.78 99.16 99.92 99.55 97.69 99.20

Table 8: Quantitative results (S-TEDS) comparison between Llama Vision, Granite Vision and SLANet-1M.

We selected two newly available large vision-language models (VLMs), Granite Vision 3.2 (Team et al.,
2025) and Llama Vision 3.2 (AI, 2025), to compare quantitatively against SLANet-1M. We also evaluated
MiniCPM-v (Yao et al., 2024), but its performance was insufficient for inclusion in the final comparison.

Following the methodology from (Peng et al., 2024), we randomly sampled a few images from each
subset of the SynthTabNet dataset and conducted two experiments. In the first, we selected 10 images per
subset; in the second, 50 images per subset. For each image, the VLMs were prompted with: “Based on
the table in the image, please generate the corresponding HTML code. Output only the HTML code.” We
then computed the S-TEDS score for each output.

The results, shown in Table 8, clearly demonstrate that SLANet-1M significantly outperforms both
Llama Vision and Granite Vision. Notably, while Granite Vision exhibited the strongest performance
among the tested VLMs, it struggled considerably when processing large, information-dense tables.

B More Qualitative Results

Figures 7 and 8 present a qualitative comparison between SLANet-1M and Granite Vision. Since Granite
Vision showed the best quantitative performance among the VLMs we evaluated, we chose it for a more
in-depth qualitative analysis.

In Figure 7, panel (a) shows the input image, which comes from the PubTabNet subset of the SynthTab-
Net test set. Panel (b) displays the output of SLANet-1M, which achieves a perfect S-TEDS score of
1.00. While a few minor content errors are visible in some cells, these are attributable to limitations in the
external models used for text detection and recognition, not SLANet-1M itself. Panel (c) shows Granite
Vision’s output, with a significantly lower S-TEDS score of 0.7658. The model incorrectly merges some
cells, produces the wrong number of columns, and introduces an excess of blank cells.

In Figure 8, panel (a) shows an input image taken from the Finance subset of the SynthTabNet test set.
Once again, SLANet-1M achieves a perfect S-TEDS score of 1.00, as shown in panel (b). In this case,
Granite Vision in panel (c) performs noticeably better than in the previous example, though still not at
SLANet-1M’s level. This improvement can be attributed to the simpler and less structured layout of the
input table.

These qualitative results further support the superiority of SLANet-1M over some of the most recent
VLMs in handling complex table understanding tasks.

C SLANet vs SLANet* vs SLANet-1M on PubTabNet

Models TEDS S-TEDS
SLANet (Li et al., 2022) 95.89 97.01
SLANet* (ours) 95.83 97.48
SLANet-1M (ours) 95.77 97.36

Table 9: Comparison on PubTabNet of models based on TEDS, S-TEDS.

Table 9 shows that SLANet-1M underperforms SLANet* on PubTabNet, likely due to SLANet*
overfitting on the PubTabNet validation set, which was the only validation set used during its training.



(a) Input table image (From PubTabNet subset of SynthTabNet).

(b) SLANet-1M’s output (S-TEDS = 1.00).

(c) Granite Vision’s output (S-TEDS = 0.7658).

Figure 7: Qualitative comparison between Granite Vision and SLANet-1M.



(a) Input table image (From Finance subset of SynthTabNet).

(b) SLANet-1M’s output (S-TEDS = 1.00).

(c) Granite Vision’s output (S-TEDS = 0.9070).

Figure 8: Qualitative comparison between Granite Vision and SLANet-1M.
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