
GOOSVC: Version Control for Content Creation with Generative AI

David Grünert1,2, Alexandre de Spindler1 and Volker Dellwo2

1Zurich University of Applied Sciences, Winterthur, Switzerland
2Department of Computational Linguistics, University of Zurich

{grud,desa}@zhaw.ch

Abstract

This paper introduces GOOSVC1, a version
control system for content creation using gener-
ative AI. As generative AI models become inte-
gral to creative workflows, managing iterative
changes, branching, and merging of content is
challenging. Current version control systems
are not designed for these workflows, which
involve multiple AI assistants exchanging text,
images, or other artifacts. In this paper, we
identify the core requirements for such a sys-
tem and show how GOOSVC meets them. Our
system provides full traceability and version-
ing of both artifacts and conversation states,
allowing seamless integration of multiple AI
assistants into creative workflows.

1 Introduction

Generative AI has rapidly evolved into a power-
ful creative partner in domains such as marketing,
design, data science, and creative writing (Dav-
enport and Mittal, 2022). Individuals and teams
often rely on large language models (LLMs) or
multimodal AIs to brainstorm ideas, refine con-
cepts, and generate or revise content (White et al.,
2023). Despite these successes, complex work-
flows, in which users combine multiple AI assis-
tants, pose significant challenges. Studies con-
firm that creative work requires fluid human–AI
co-creation (McGuire et al., 2024; Rezwana and
Maher, 2023). Such co-creation is rarely linear:
users frequently need to revise, branch, or revert
to earlier prompts, and must manage a growing
collection of text, images, audio files, or other
artefacts in the process (Cygnis, 2024; Kumar and
Suthar, 2024; Coca-Cola, 2023). Because of the
non-deterministic nature of generative AI, but also
for legal reasons (European-Commission, 2020),
AI-assisted workflows must offer end-to-end trace-
ability of all generated artefacts including all AI
interactions.

1https://goosvc.com

While conventional version control systems
(VCS) such as Git track file changes and allow
branching and merging, they are not designed to
handle dynamic AI-generated outputs or iterative
dialogue histories. Existing generative AI plat-
forms (e.g., ChatGPT, Microsoft Co-Pilot, Google
Gemini) store chat logs and generated files, how-
ever, they lack robust mechanisms to manage
branching workflows, merge parallel conversation
threads, or revert selectively to earlier states. Ver-
sioning of AI models has been discussed in prior
work (Vadlapati, 2024), but to our knowledge no
system explicitly supports full-versioning of gen-
erative AI interactions alongside the content they
create—particularly when multiple AI assistants
are used in parallel. This gap often forces users
to adopt fragmented workflows, where they manu-
ally copy AI outputs, store them in external tools,
and struggle to piece together a coherent project
history.

In this paper, we address this gap by introducing
a novel version control approach that captures both
AI-driven conversations and their resulting arte-
facts within a single, integrated framework. Specif-
ically, our work makes the following contributions.

• We identify the core challenges for an integra-
tion of AI assistants into iterative, multimodal
workflows. From these observations, we de-
rive the requirements for an AI-focused VCS.

• We propose a new VCS that treats every user
prompt, AI response, and generated artefact
as part of a unified version history, enabling
branching, merging, and reverting at both the
project and conversation levels while offer-
ing end-to-end traceability for each artefact
created.

• We demonstrate the system’s practicality
through a data science application that gen-
erates synthetic datasets using GOOSVC as
underlying VCS.

https://goosvc.com


The remainder of this paper is organized as fol-
lows. Section 2 introduces a detailed use case to
motivate the requirements for versioning genera-
tive AI workflows. We then review related work
in generative AI interfaces and traditional VCSs in
Section 3, highlighting their limitations. Section 4
describes our proposed system’s architecture, data
model, and merging strategies. Section 5 show-
cases a real-world demonstration of our approach
in synthetic dataset creation, and finally Section 6
provides concluding remarks and outlines direc-
tions for future work.

2 Content Creation Use Case

Consider a creative director tasked with producing
an advertisement clip for a new, innovative product.
The process begins by defining a target persona
and mapping out their journey, capturing key emo-
tional touchpoints and decision-making moments.
Next, the director articulates the product’s value
proposition and envisions how it can transform the
persona’s experience, weaving these elements into
a compelling narrative. From that, multiple itera-
tions of storylines are developed and refined—from
initial concepts to detailed scene descriptions. The
final storyboard emerges as a composite artefact
that combines descriptive texts with illustrative im-
ages and may also include audio or video elements
for more immersive storytelling.

We assume that the creative director uses an au-
thoring tool for this task. In principle, it is pos-
sible to use AI assistants for each of these work
steps. For example, a large language model can
help brainstorm ideas for the persona and the jour-
ney, propose story lines and a multimodal AI can
generate images and text for the storyboard. Addi-
tionally, specialized generative models can produce
audio or video prototypes. Based on this use case,
we will now identify typical procedures and derive
the requirements that are placed on an underlying
VCS used by the authoring tool.

2.1 Iterative Development of Artefacts

In creative workflows, it is common to iteratively
develop artefacts. For instance, the creative direc-
tor may want to refine persona sketches in multiple
iterations. When using an authoring tool offering
AI assistance for this task, the director may need to
adjust the prompts to elicit more detailed responses
or to clear up misunderstandings. When the author-
ing tool wants to send these prompt to a chat-based

assistant, such as ChatGPT via API, any request
must include the complete chat history. Therefore,
the chat history for every generated artefact must
be stored. To support this, a VCS must:

R1 Provide a mechanism to version artefacts to-
gether with their chat history.

2.2 Using Multiple Assistants
In creative workflows, it is common to use mul-
tiple AI assistants. These assistants may be used
independently of each other or in a collaborative
way. For instance, the creative director may use
a large language model to develop a storyline in
collaboration with a multimodal AI to generate im-
ages for the storyboard. Or they may use multiple
instances of the same AI model with different roles
to investigate different perspectives like the view of
the customer and the view of the service provider
onto the product.

To support iterative development with multiple
assistants, the authoring tool must store the chat
history and the generated artefacts for every as-
sistant separately. This is necessary to keep the
chat context clean for every assistant and to pre-
vents unintended cross-contamination of different
chat contexts. Furthermore, as long as there is no
interaction between the assistants, using separate
contexts allows to revert one chat to a previous state
without affecting the others. However, to allow col-
laborative use of assistants, it must be possible to
share artefacts between the contexts. To support
this, a VCS must:

R2 Provide a mechanism to create and manage
chat contexts for multiple assistants that con-
tain artefacts and chat histories.

R3 Provide a mechanism to share artefacts be-
tween chat contexts.

2.3 Reverting to Previous Versions
In creative workflows, it is common to revert to
previous versions to revise decisions or to correct
mistakes. For instance, the creative director may
want to revert to an earlier persona sketch or revisit
a previous storyboard to incorporate a discarded
scene. For this task, an AI-assisted authoring tool
should support two types of revert: reverting the
complete project to a previous state and reverting
a single chat to a previous state. When reverting a
project, all artifacts and the related chats must be re-
verted. When reverting a single chat, only artifacts



generated in this chat must be reverted. However,
the causality must be maintained between the chat
and the project. For instance, if an artefact is re-
verted that has been used elsewhere in the project.
To support this, a VCS must:

R4 Provide a mechanism to revert a project to any
previous version including all chats and their
artefacts.

R5 Provide a mechanism to revert a chat includ-
ing the generated artifacts to any previous ver-
sion while preserving the causality between
the chat and the project.

2.4 Creating Variants of Workflows
In creative workflows, it is common to create mul-
tiple variants to explore different ideas or evaluate
the impact of changes. For instance, the creative
director may want to generate several versions of
a storyboard to compare different visual styles or
experiment with alternative personas. When using
chat-based assistants via the provided API, the au-
thoring tool must keep track of alternative paths
because any request must include the complete chat
history. To support this, a VCS must:

R6 Provide a mechanism to start alternative paths
from any previous version including all arte-
facts and their associated chat histories with-
out losing the progress made so far.

2.5 Combining Parallel Workflows
It is common in creative workflows to parallelize
work on different parts of a project to increase ef-
ficiency. For instance, the creative director may
want to distribute the work on different parts of
the storyboard among several team members. To
get the final storyboard, the authoring tool needs to
combine the results of parallel workflows. During
this merge, two types of conflicts may arise: Con-
flicts on artefacts occur when the same artefact is
changed in multiple branches. Conflicts on chat his-
tories occur when the same chat was continued in
multiple branches. Furthermore, these merges will
often include more than two branches. To support
this, a VCS must:

R7 Provide a mechanism to merge any number
of parallel workflows including their artefacts
and the associated chat histories offering meth-
ods to resolve conflicts on artefacts and on
chats.

2.6 Defining Stages in Workflows

In creative workflows, it is common to define stages
to structure the creative process. For example, the
creative director may want to define stages for the
definition of the personas or the definition of their
journeys. Stages help simplify to revert to defined
milestones, to create variants and to parallelize
workflows. To achieve that, an authoring tool must
guarantee that the stages are unique at any time
within the project history. This must be ensured
when stages are added but also when parallel work-
flows are merged. To support this, a VCS must:

R8 Provide a mechanism to define stages in the
version history and to keep these stages unique
with the project history also when merging
parallel workflows.

2.7 Summary

These procedures derived from our use case re-
veal several critical challenges for a version con-
trol system that is used by an authoring tool for
creative workflows. First, there is an urgent need
for dual versioning with contexts (R1, R2, R3)
that maintains a direct link between evolving arte-
facts and the underlying AI-driven conversations
that produce them. Second, the ability to revert
projects and chats (R4, R5) is crucial for revis-
ing decisions and recovering from mistakes. When
reverting single chats, the system must maintain
causality between the chat and the project. Third,
the iterative nature of creative work requires robust
automatic branching (R6) to explore alternatives
without losing previous progress. Fourth, while
parallelization can enhance efficiency in creative
workflows, merging parallel paths (R7) requires
a mechanism to combine multiple branches and
resolve conflicts on artefacts and chats. Finally, the
ability to define and maintain project stages (R8)
in the creative process is essential for structuring
complex workflows and project planning.

Every requirement above targets a distinct di-
mension of AI-assisted content creation, ensuring
coverage of iterative development, collaboration
among multiple assistants, safe reversion, paral-
lel exploration, and structured milestone definition.
Together, they form an orthogonal set that com-
prehensively addresses the challenges identified in
this use case. Overall, these requirements address
the nonlinear, multimodal, and iterative nature of
generative AI use cases introduced in Sect. 1.



3 Background

In this section, we first assess how existing gen-
erative AI tools and interfaces manage iterative
creative workflows and highlight their current lim-
itations in terms of traceability and prompt reuse.
We then turn to VCS as a potential source for more
advanced branching and merging concepts. We
go on to evaluate how well these approaches fulfil
the requirements described in section 2, and finally
identify the key gaps that motivate our solution.

3.1 Generative AI Interfaces

Contemporary generative AI front-ends such as
ChatGPT, Microsoft Co-Pilot, Google Gemini and
Anthropic Claude have transformed content cre-
ation by delivering multimodal outputs and allow-
ing users to refine prompts on the fly. Despite these
strengths, they offer limited support for complex,
iterative workflows that require branching, merg-
ing and robust versioning. While some interfaces
allow users to revisit or modify previous prompts,
each output is still treated as an isolated event, and
complex artefacts or composite data sets are not
intrinsically linked to the conversation history that
produced them. This missing link makes end-to-
end traceability difficult: although users can see
the final product, they have no systematic way of
exploring the creative process that led to that out-
come.

Popular AI front-ends often confine interactions
to a single chat context, making it difficult to col-
laborate across multiple AI models or to run par-
allel explorations of the same artefact. In partic-
ular, if AI models from different providers are in-
volved, their interaction cannot be documented.
The functions available within the web interface,
such as storing or editing a chat history especially
from different models, are vendor-specific, manual
processes. When these models are invoked pro-
grammatically via an API, the application devel-
oper must transmit the entire conversation history
again for every request and in addition manage the
branching logic. As a result, key requirements such
as R6 (starting alternative paths), R7 (merging par-
allel paths), R8 (defining stages in workflow), and
R1 (versioning artefacts with their chat history) re-
main uncovered. Consequently, creators either do
without the possibility of branching and merging
or resort to inefficient workarounds such as copy-
ing intermediate outputs, duplicating prompts, and
manually tracking versions outside the AI tool.

In summary, while modern generative AI sys-
tems excel at generating rich content, they offer
minimal native support for iterative, branching
workflows. This limitation hinders the kind of con-
trolled exploration and traceability that creators in-
creasingly need when integrating AI into complex
projects.

3.2 Version Control Systems

VCSs have long been essential for tracking and
managing changes across software projects and
other text-based repositories. Traditional systems,
such as Subversion and Git, typically provide sev-
eral core capabilities. First, they maintain a chrono-
logical sequence of changes, known as linear ver-
sioning, which preserves a historical record of mod-
ifications. Second, they allow branching, so that
work can proceed in parallel lines of development,
making it possible to explore experimental features
or maintain distinct configurations. Third, these
systems include merging functionality, enabling
divergent branches to be reconciled into a unified
project state. Finally, they allow projects to main-
tain different variants through mechanisms that can
track concurrent releases or alternate product lines.

While these mechanisms provide a solid
blueprint for managing project histories, they were
never designed to track interactive conversations
or dynamically generated content from AI models.
Such conversations must be versioned in a manner
similar to code commits, yet cannot be handled by
line-based diffs. Conventional VCSs distinguish
between text and binary files, both of which are in-
adequate for storing conversational histories. This
is because requirements such as R1 (versioning
artefacts with their chat history), R2 (managing
multiple chat contexts), R3 (sharing artefacts be-
tween chat contexts), and R5 (reverting selected
chats while preserving causality) are not met.

In light of these gaps, where generative AI tools
lack integrated branching, merging, and revert capa-
bilities, and where conventional VCS fail to capture
conversational histories, we propose a specialised
versioning framework tailored to AI-driven cre-
ative workflows. Our approach unifies conversation
and artefacts tracking, addresses branching across
multiple assistants, and integrates robust merging
mechanisms, laying the groundwork for end-to-
end traceability and prompt reuse in generative AI
projects.



4 Versioning Approach

In this section, we present our new versioning ap-
proach and show how the requirements listed in
2.7 are addressed. Our implementation GOOSVC
(Grünert, 2025) is designed to be used in a produc-
tion environment considering operational aspects
such as performance, scalability, and security. As
shown in Figure 1, users will typically not interact
directly with GOOSVC. The goal is to simplify the
integration of AI assistants into workflows, enabel-
ing seamless branching, reverting, and merging,
and to offer traceability across both the prompts
and the generated content.

user

API
application with AI
assisted workflows

AI assistants

   
 GOOSVC

Figure 1: System overview

version tree artifact pool

c1

m2

m3

m5

a4

s1

artifact blob
m1

a1

m4

a3

artifact blob

artifact blob

artifact blob

a2

b1 b2 b3 branches

root

Figure 2: Data model example showing a version tree
with three branches (b1 to b3) containing chat- (c),
message- (m), stage- (s) and artifact-nodes (a) with ref-
erences to the artifact pool.

Figure 2 presents the core elements of the data
model. It consist of an immutable node-based ver-
sion tree, where every interaction is recorded as a
distinct node with associated metadata (e.g., parent
node, time stamp, author, committer, and type spe-
cific data), an immutable pool for storing generated
artifacts, and branches to keep track of all available
paths. Nodes have one of the following types:

• Chat Nodes: Add a new chat context to the
project for interactions with an AI. Every chat
context has a unique ID later used by mes-
sages and artifacts to declare their affiliation.
Chats can be started either from scratch or
with a parent by referring to a message node.
Chats with parents are interpreted as a contin-
uation from the referenced message.

• Message Nodes: Store prompt-response pairs
that capture the conversational exchange with
an AI. All messages must be associated with
a chat context.

• Artifact Nodes: Store artifacts (text, images,
audio) by referencing the actual data in the
artifact pool and defining metadata such as
the filename. All artifacts must be associated
with a chat context.

• Stage Nodes: Define named project mile-
stones. Stage names must be unique within
any path of the version tree.

• Merge Nodes: Document a merge operation
of parallel branches. Merge nodes are not
shown in Figure 2. Details are described in
section 4.4.

4.1 Dual Versioning with Contexts
When inserting nodes into the version tree, the
position of the new node must be defined. This
position can either be a branch or an existing node.
When a branch is used, the new node is appended
to the branch. When a node is used, the system
inserts the new node as a child of the given node.
Depending on the parent’s position, this will either
create a new branch or continue a branch (see 4.3).

The system establishes a link between AI inter-
actions and their generated artifacts by capturing
both within the same version tree. All prompt-
response pairs are stored as message nodes in the
version tree, referencing a chat context and thereby
forming a complete lineage of the conversational
history. Similarly, every artifact is represented as
an artifact node, referencing both the chat context
used to create it and the artifact in the pool. When
storing or changing artifacts, the system adds a new
artifact node containing all metadata such as file
name, path, scope (chat, global) and the operation
(add, update, rename, delete). Artifacts in the pool
are immutable, therefore, when artifacts are added
or updated, a new artifact is added to the pool.



Every node of the version tree represents a ver-
sion of the project. This version is defined as the
union of all nodes along the path from that node
back to the root. When retrieving a selected project
version, the system can either return the complete
project or only data from a specific chat context. If
the path contains multiple artifacts with the same
combination of path and filename, the latest node
masks all older ones. For any version of a project,
only one artifact for a given path-filename com-
bination is visible. If the last node for a given
path-filename combination has the operation delete,
there is no such artifact in the respective version.
Path and filename are both defined by the workflow
application. Similar to popular VSC, The complete
set of all artifacts can be checked out to the local
file system for any version of the project.

While messages are always limited to one chat
context, the scope of artifacts can be set. If scope
is set to chat, the artifact is only visible within the
chat context. If set to global, the artifact is visible
in all chats. Setting the scope of an artifact to
global allows to share artifacts between chats. This
dual versioning approach with contexts ensures that
every creative decision is fully traceable, enabling
users to audit the entire workflow and understand
the context behind every artifact generated within
the project.

4.2 Revert Projects and Chats

Our system supports two types of revert: reverting
the entire project to a previous state and reverting
a single chat to a previous state. When reverting a
single chat, only the artifacts within the chat’s con-
text and their associated chat history are reverted.
In contrast, reverting a project to a previous state
will revert all chats and their artifacts.

Reverting a single chat is achieved by inserting
a new chat node that references the previous state
as parent. New messages added to the chat after
the revert must then be associated with this new
chat. Figure 3 shows an example of reverting a
chat. Subfigure a) shows the project before the
revert containing two chats: c1 (m1, m3) and c2
(m2, m4). Subfigure b) shows the project after
reverting the chat c1 to message m1 and adding an
additional message m5. Reverting is achieved by
adding c3, referencing m1 as parent. The chat is
then extended with message m5. After this revert,
the project contains three chats: c1 (m1, m3), c2
(m2, m4), and c3 (m1, m5).

Reverting a project is achieved by branching off
from the previous state. The new branch is then
used to continue the project. Figure 3 Subfigure c)
shows the project after reverting the entire project
to message m1 and adding the additional message
m5 to chat c1. The project is branched off from m1,
and c1 is extended with m5. The project in branch
b2 contains chat c1 with the messages m1 and m5.

a)

c1

m1

m3

m4

m2

b1

b)

c1

m1

m3

m4

m2

c2

b1

c3

m5

c)

c1

m1

m3

m4

m2

c2 m5

b1 b2

c2

Figure 3: a) Original project with two chats (c1, c2). b)
Project after reverting chat c1 to m1 and adding addi-
tional message m5. c) Project after reverting project to
m1 and adding additional message m5. Nodes with the
same background color belong to the same chat context.

4.3 Automatic Branching

In our system, branching is used for three different
purposes: Variants, reverting, and parallelization.
Variants are used to explore different ideas or eval-
uate the impact of changes. Finally, one variant is
selected to continue with. Reverting is used to go
back to a previous state and continue working from
there by branching off. Parallelization is used to
increase efficiency by working simultaneously on
different parts of a project. The results of parallel
workflows are merged to create the final output (see
4.4).

The creation of these branches is not always a
conscious decision. Often, they emerge naturally
as the creative process unfolds. To capture this or-
ganic branching, our system automatically creates
new branches whenever a node diverges from an
existing path. Instead of using names for branches,
the system uses unique identifiers. These identi-
fiers are used to reference a branch when appending
nodes or merging branches.



4.4 Merging Parallel Paths
Merging creative workflows is used to combine the
work of a parallelized sections of a project. Such a
merge may include more than two branches. Fur-
thermore, the merge does not necessarily include
the complete branch up to its head. In the example
shown in Figure 4, branch b4 is merged with n8

from b2 and n6 from b3.

n1

n3

n4

n5

n8

n11

n2

n6

n9

n7

n10

b1 b2 b3 b4

n'7

n'10

n'5

n'8

n'6

m1

b5

a) b)

n1

n3

n4

n5

n8

n11

n2

n6

n9

n7

n10

b1 b2 b3 b4

Figure 4: Example of a conflict-free merge with nodes
n of unspecified type. a) Original project before the
merge. b) Project after merging b4, n8 and n6. Nodes
with the same background color belong to the same
branch before the merge.

Merging is achieved by replaying all nodes that
follow the first common ancestor into a new branch
to create a unified, sequential history. At the end of
this sequence, an additional merge node is added
to document the merge. In the example shown in
Figure 4, branch b5 contains this sequence and the
additional merge node (m1).

As introduced in 2.5, two types of conflicts my
arise when merging parallel paths: Chat conflicts,
when the same chat was continued in multiple
branches, and artifact conflicts, when the same
artifact was changed in multiple branches. Chat
conflicts are resolved as follows: the system splits
the dialogue automatically into two chats with a
shared history before the first common ancestor.
This approach ensures that the context of every
conversation remains intact, even when the con-
tent diverges. In the example shown in Figure 5,
branches b2 and b3 both continued the chat c1. To
resolve the conflict when merging b2 and b3, the
system creates a new chat (c2) with the common
history of c1 before the divergence. Message m′

4

and artifact a′3 are then both added to c2.

c1

m2

m3

m5

a4

s1

m1

a1

m4

a3

a2

b1 b2 b3

c1

m2

m3

m5

a4

s1

m1

a1

m4

a3

a2

b1 b2 b3 b4

m'3

m'5

a'4

m'4

a'3

c2

g1

a) b)

Figure 5: Example of a merge with conflicting chats
a) Version tree before the merge. b) Version tree after
merging b2 and b3. Nodes with the same background
color belong to the same chat context.

The resolution of artifact conflicts depends on
the file type. For text files, the system may automat-
ically merge the changes, if independent sections
were modified. For binary files, the system will
rename the files. Both cases may require manual
review of the result. In general, merge conflicts on
artifacts should be avoided. For most situations,
parallelized work only makes sense if the work is
independent.

Thus, the merging mechanism effectively inte-
grates parallel creative paths while resolving con-
flicts automatically. Instead of relying on standard
diff-based methods, our approach tailors conflict
resolution to the nature of the content, ensuring that
the creative process remains fluid and efficient.

4.5 Project Stages

Stages function as immutable checkpoints within
the project history. Therefore, stages are not as-
sociated with a chat context. Every stage marks
a milestone that remains unchanged regardless of
subsequent iterations, offering stable reference for
reverting or branching the project. Stages are im-
plemented as stage nodes in the version tree. The
system ensures that stages are unique within any
path of the version tree. The system refuses to
add a stage if the name already exists. Also when
merging parallel workflows, stages must be kept
unique. To achieve this, the system refuses to
merge branches containing any stages. Stages rep-
resent milestones for the entire project. Adding a



stage via a merge would contradict this concept.
In summary, stages provide fixed anchors in the
creative process, ensuring that pivotal moments
remain preserved and clearly defined.

5 Demonstration

To demonstrate the flexibility and real-world utility
of our version control approach, we applied it to a
complex workflow that generates synthetic crime
datasets for research. Data recorded during crim-
inal investigations is often confidential and there-
fore unavailable for research. Existing datasets
from other domains do not share the characteris-
tics of crime-related data, which typically include
telephone recordings, audio surveillance with vary-
ing quality, multilingual and emotional speech, and
background noise containing relevant information.
Moreover, higher-level analyses such as communi-
cation structure detection require the spoken con-
tent to match the context of actual criminal cases.

To address these challenges, we presented a
workflow in (Grünert et al., 2024) that generates
synthetic datasets from a case outline (see Figure 6).
Specifically, it uses LLMs to produce transcripts
of conversations and messages related to a hypo-
thetical criminal case. This involves 22 different
prompt templates and over 400 individual requests
to LLMs. Next, these transcripts are annotated
with emotions and timing aspects and then con-
verted to audio files. Background noise and signal
processing are subsequently applied to create realis-
tic acoustic variations. The final dataset comprises
text messages, audio files, and annotations (RTTM,
TextGrid), making it suitable for research on speech
analysis or communication structures.

generate
persons

generate
case report

generate
timeline

generate
interactions

generate phone
call dialogs

generate text
messages

generate
background

text to speech
with emotions

generate
audio timing assembly post

processing

impulse
responses

annotation
for audio

case
outline

audio

text
messages

voices

Figure 6: Case generation pipeline

Using GOOSVC, we developed an interactive
web application that orchestrates every phase of
this workflow while providing robust version con-
trol capabilities. One key advantage is the ability
to manage distinct stages in the dataset generation
process. Users can revert to any prior milestone
(R4, R5) and make adjustments without having to
restart the entire pipeline. For instance, if a user
wants to revise how two suspects interact in the
transcripts or modify the background noise level,
they can branch off from the relevant stage, edit
just the targeted prompts and parameters, and then
regenerate only the affected outputs—preserving
all other completed work.

Furthermore, for every artifact created, the sys-
tem automatically stores the associated AI interac-
tions. This provides end-to-end traceability (R1),
allowing users to see which prompts and responses
led to a specific audio track, transcript, or annota-
tion. The same approach also supports branch-
ing out (R6) into parallel workflows—such as
exploring different emotional tones for conversa-
tion—before merging them (R7), if needed. As
a result, workflows deemed as successfull can be
conveniently reused and adapted for new case out-
lines, emphasizing the flexible and iterative nature
of GOOSVC.

6 Conclusion

In conclusion, we have introduced a novel version
control approach tailored for generative AI-driven
content creation. Our VCS captures both AI inter-
actions and the resulting artifacts in a unified sys-
tem offering branching, merging, and stable mile-
stones. By addressing the key challenges of itera-
tive creative workflows—such as maintaining trace-
ability, managing parallel explorations, and resolv-
ing content-specific conflicts—our approach offers
a robust framework that enhances reproducibility
and flexibility. This work not only streamlines the
creative process but also lays the groundwork for
future enhancements in collaborative AI-driven de-
sign and content management.



References
Coca-Cola. 2023. Coca-cola invites digital artists to

‘create real magic’ using new ai platform.

Cygnis. 2024. Best practices for implementing ai work-
flow automation in enterprises.

Thomas H. Davenport and Nitin Mittal. 2022. How
generative ai is changing creative work.

European-Commission. 2020. White paper on artificial
intelligence-a european approach to excellence and
trust.

David Grünert. 2025. Goosvc github repository.
https://github.com/goosvc/goosvc.

David Grünert, Dominic Pfister, Alexandre de Spindler,
and Volker Dellwo. 2024. Generating synthetic
datasets for the validation and training of automatic
speech analysis systems in the context of organized
crime. 2nd VoiceID conference, Marbug, Germany.

Dinesh Kumar and Nidhi Suthar. 2024. Ethical and
legal challenges of ai in marketing: an exploration of
solutions. Journal of Information, Communication
and Ethics in Society, 22(1):124–144.

Jack McGuire, David De Cremer, and Tim Van de Cruys.
2024. Establishing the importance of co-creation and
self-efficacy in creative collaboration with artificial
intelligence. Scientific Reports, 14(1):18525.

Jeba Rezwana and Mary Lou Maher. 2023. Designing
creative ai partners with cofi: A framework for mod-
eling interaction in human-ai co-creative systems.
ACM Transactions on Computer-Human Interaction,
30(5):1–28.

Praneeth Vadlapati. 2024. Updagent: Ai agent version
control framework for real-time updation of tools.
International Journal of Science and Research (IJSR,
13(11):628–632.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. arXiv preprint arXiv:2302.11382.

http://www.createrealmagic.com/
http://www.createrealmagic.com/
https://cygnis.co/blog/ai-workflow-automation-best-practices-enterprises/
https://cygnis.co/blog/ai-workflow-automation-best-practices-enterprises/
https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work
https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://github.com/goosvc/goosvc
https://www.doi.org/10.21275/SR241106070538
https://www.doi.org/10.21275/SR241106070538

