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Discourse-aware machine translation

• MT = automatic translation of texts; online or standalone

• Statistical or neural MT: efficient, good coverage, intelligible

• But systems always translate sentence by sentence

– do not propagate information along a series of sentences

• Discourse information is helpful for coherent text translation

– referring information: noun phrases (terms), pronouns
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Can we improve MT of nouns/pronouns 
using text-level information?

1. Translate repeated nouns consistently, 

i.e. using the same translation

– challenge: learn when to enforce consistency

2. Translate nouns and pronouns so as to preserve 

coreference relations from source to target

– challenge: leverage imperfect automatic coreference
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Example from the Text+Berg corpus

• Source: Am 3. Juni schleppten Joe, Mac und ich die erste Traglast zum 
Lager II, während die Träger die unteren Lager mit Vorräten versorgten. [..] 
Am nächsten Morgen kamen die Träger unbegleitet vom Lager II zu uns 
herauf, als wir noch in den Schlafsäcken lagen.

• Reference: Le 3, Joe, Mac et moi montâmes les premières charges au camp 
II, tandis que les porteurs faisaient la navette entre les camps inferieurs. 
[…] Nous étions encore dans nos sacs de couchage, le lendemain matin, 
lorsque les porteurs arrivèrent du camp II.

• MT: Le 3 Juin Joe, Mac, et j'ai traîné la première charge au camp II, tandis 
que le support fourni avec le roulement inferieur fournitures.  […] Le 
lendemain matin, le transporteur est arrive seul à partir de Camp II a 
nous, car nous étions encore dans leurs sacs de couchage.
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1. ENFORCING THE TRANSLATION 
CONSISTENCY OF REPEATED NOUNS 
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Should two close occurrences of a source word 
always be translated by the same target word? 

• Do not enforce consistent translations blindly!

– instead, learn when to translate two occurrences of the same noun 
identically, based on surface features (lexical, syntactic, semantic)

Use the learned classifier to improve a baseline MT system

1. Detect two occurrences of the same noun in the source text

2. Find their baseline translations using word alignment

3. If they differ, decide whether/how to edit: 1st
 2nd, or vice-versa

Pu X., Mascarell L. & Popescu-Belis A. (2017) - Consistent Translation of Repeated Nouns using Syntactic 
and Semantic Cues. Proceedings of the 15th Conference of the European Chapter of the Association for 
Computational Linguistics (EACL), Valencia, 5-7 April 2017.
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Lexical and semantic features

• For each of the two nouns in an inconsistently translated pair

– features of the local context - source and target

• 3 surrounding words to the left and right (same sentence)

– features of the discourse context - target only

• cosine similarity between the vector representation (word2vec) of the 
translated word and the vector of its context (40 words)

• interpretation: semantic similarity may help to decide which
of the two translations (if different) best matches its context
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Learning to enforce consistency

• Classification task (e.g. with MaxEnt, SVM, RF, etc.)

– given a repeated noun in the source text, with two different 

(i.e. inconsistent) baseline translations, decide whether: 

1st translation replaces 2nd one | vice-versa | no change

• Training/testing data for classification: UN Corpus
Training Testing

Words Rep. nouns Words Rep. nouns

GermanEnglish: 4.5M 11k 225k 700

ChineseEnglish: 368k 3.3k 121k 650

• Training data for MT: WIT3 Corpus (TED), 3.5M words
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Integration with MT

1. Post-editing

– edit the baseline translation depending on the classifier’s prediction

2. Re-ranking

– obtain the 10,000-best translation hypotheses from the SMT system 

– search among them for highest ranking ones in which the repeated 
words are translated as predicted by the classifier

3. Re-ranking + Post-editing

– same as (2), but if none is found, post-edit the baseline translation (1)
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Results
• Accuracy of consistency prediction (MaxEnt, 10 fold c.-v.)

semantic syntactic all features

Chinese: 76.7% (k=0.65) 69.5% (k=0.32) 83.3% (k=0.75)

German: 80.8% (k=0.71) 76.8% (k=0.65) 83.4% (k=0.75)

• Best options found on development data:  MaxEnt classifier & 
syntactic + semantic features  &  re-ranking + post-editing

• Translation quality (BLEU)
baseline our system oracle

Chinese  English 11.07 11.36 11.64

German  English 17.10 17.67 17.99
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2. USING A COREFERENCE SCORE 
TO RE-RANK MT HYPOTHESES
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Using coreference similarity for MT

• Principle

– consecutive mentions (nouns, pronouns) of the same entity should 
be translated consistently: keep referring to the same entity

• Implementation

– maximize a global coreference similarity score by re-ranking 
hypotheses from a baseline MT system (Moses)

– SpanishEnglish translation, AnCora-ES test data

Miculicich Werlen L. & and Popescu-Belis A. (2017) - Using Coreference Links to Improve Spanish-to-
English Machine Translation. Proceedings of the EACL Workshop on Coreference Resolution Beyond 
OntoNotes (CORBON), Valencia, p. 30-40, 4 April 2017.
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Coreference mistakes due to translation errors

14

Source Human Translation Baseline MT

La película narra la historia de [un 
joven parisiense]c1 que marcha a 
Rumanía en busca de [una 
cantante zíngara]c2, ya que [su]c1

fallecido padre escuchaba siempre 
[sus]c2 canciones.

Pudiera considerarse un viaje 
fallido, porque [∅]c1 no encuentra 
[su]c1 objetivo, pero el azar [le]c1

conduce a una pequeña 
comunidad...

The film tells the story of [a young 
Parisian]c1 who goes to Romania 
in search of [a gypsy singer]c2 , as 
[his]c1 deceased father use to 
listen to [her]c2 songs.

It could be considered a failed 
journey, because [he]c1 does not 
find [his]c1 objective, but the fate 
leads [him]c1 to a small 
community... 

The film tells the story of [a young 
Parisian]c1 who goes to Romania 
in search of [a gypsy singer]c2 , as 
[his]c2 deceased father always 
listened to [his]c1 songs.

It could be considered [a failed 
trip]c3 because [it]c3 does not 
find [its]c3 objective, but the 

chance leads ∅ to a small 
community...
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Challenge: compute a reliable 
coreference score for a translation

• For any candidate translation, measure the similarity between its 
coreference links and those of the source text

1. Apply a coreference resolver to the source text and the translation

• Stanford Core NLP Tools on target, but ground truth links on source

2. Project mentions from the candidate translation back to the source, 

i.e. referring expressions: nouns, pronouns

3. Apply existing metrics for evaluating coreference links: average

• MUC: links to be inserted or deleted | B3, CEAF: precision and recall at cluster-level
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Empirical verification: CSS increases 
with better translations

(on 3000 words from AnCora-ES)

Hypothesized 
Translation 

Quality

BLEU MUC B3 CEAF

Human translation - 37 32 41

Commercial NMT 49.7 28 26 36

Baseline PBSMT 43.4 23 24 33

Automatic 
Coreference 

Quality

F1 scores (%)
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Using the coreference score 
for document-level MT

• For each sentence of a translated text (SpanishEnglish)

– get from the baseline MT (Moses) the 1000-best hypotheses

– trained on WMT 2013 (14M sent.), tuned on NC 2011 (5.5k sent.)

– tested on News Test 2013 (3k sent.): BLEU = 30.8

– select hypotheses that differ in the translations of mentions

• Beam search to maximize the coreference score

– starting from the first sentence, search among the 

hypotheses for those that improve the text-level score
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Evaluation 
(10 test documents, with our translations)
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Metric PBSMT NMT Our system

BLEU 46.5±4.3 46.9±3.7 41.7±3.9

Accuracy of pronoun 
translation

0.35±0.07 0.37±0.07 0.40±0.1

Accuracy of noun 
translation

0.78±0.08 0.78±0.07 0.74±0.01

• The number of pronouns that are identical 
to the reference translation increases

– especially for a second approach, based on 
post-editing mentions (see our paper)
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Findings

• Maximizing coreference similarity with the source only brings 

minimal improvements to noun/pronoun MT: why?

• imperfect (ca. 60-70%) automatic coreference resolution  improve

• imperfect use of the criterion in SMT  try document-level decoder

• optimal translation not among 1000-best hyp. (20%)  look beyond

• Pronouns are genuinely ambiguous, hence even imperfect 

coreference links help to make the right decisions more often

• Alternative method: post-editing the mentions and maximizing 

score based on coreference features  improves pronouns
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Conclusion and perspectives

• Correct & consistent noun/pronoun MT remains an open problem
– improved coreference/anaphora resolution is beneficial to MT

– using only coreference-related features seems the best approach

• Future work
– word sense disambiguation for MT

– larger use of context in neural MT

• Discourse-level MT
– nouns, pronouns, but also connectives, verb tenses, style, etc.

– workshops & shared tasks: DiscoMT 2013, 2015, 2017 @ EMNLP
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THANK YOU FOR YOUR ATTENTION!

9 June 2017 21

MODERN Sinergia project SUMMA H2020 project



Credits
• Large collaboration started in 2010 supported by the Swiss National 

Science Foundation through two consecutive Sinergia projects

COMTIS: Improving the coherence of MT by modeling inter-sentential relations

MODERN: Modeling discourse entities and relations for coherent MT

Also with support from the SUMMA EU project

• Research groups and people

– Idiap NLP group:  Andrei Popescu-Belis, Thomas Meyer,  N. Quang Luong, Najeh Hajlaoui,  

Xiao Pu, Lesly Miculicich Werlen, Jeevanthi Liyanapathirana, Catherine Gasnier

– University of Geneva, Department of Linguistics: Jacques Moeschler,  Sandrine 

Zufferey, Bruno Cartoni, Cristina Grisot, Sharid Loaiciga

– University of Geneva, CLCL group: Paola Merlo,  James Henderson,  Andrea Gesmundo

– University of Zurich, Institute of Computational Linguistics:  Martin Volk,  Mark Fishel,  

Laura Mascarell,  Annette Rios Gonzales,  Don Tuggener

– Utrecht Institute of Linguistics:  Ted Sanders,  J. Evers-Vermeul,  Martin Groen,  Jet Hoek
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