
 • GraphDB, SPARQL:
 We use data from IMDb, stored as RDF Triples in GraphDB:
 636307, firstName, Clint
 636307, lastName, Eastwood
 Million Dollar Baby, director, 636307

Four Different Ways to Build a Chatbot About Movies

Rule Based Question Answering Modelling Conversation Context

Learning Dialogues End-to-End Microservice Architectures

Erland Xhoxhaj
Yusuf Koc

Sandro Panighetti
Matteo Togni

Dirk Von Grünigen
Martin Weilenmann
Hans Daniel Graf

Daniel Zürrer

Fernando Benites
Jan Deriu

Nico Neureiter
Pius von Däniken

Mark Cieliebak
Walter Eich

Stephan Neuhaus
Kurt Stockinger

We developed a bot which is able to answer basic factoid questions on
movies, like "Who directed Inception?" or "When was Brad Pitt born?". It
parses the question using natural language processing and machine learning
techniques and extracts the relevant information from an existing database.
This project shows a possible way to replace formal database queries by
natural language questions. In that way we could provide an interface for
non-technical users to databases from virtually any domain.

Show me the movies of 2016

The recent developments and interest in cloud
computing lead to increased use of microservice
architectures, where classical monolithic applications
are replaced by independent services, which rely on
very little communication. This kind of architecture
can have great advantages in scalability, robustness
and innovative potential.

We developed a neural network which learns how to respond to a dialogue partner. In contrast to the two
chatbots above, the focus was not on correctly answering factoid questions, but rather on learning end-to-end to
interpret input and generate appropriate output without any external source of information.

Chatbots have recently become a focus of broad interest. Many systems claim to provide technology to develop your
personal bot. However, the technologies behind the scene are either kept secret or trivial.
We examine four different, technologically challenging approaches to dialogue systems. Each system engages the

problem from a different perspective: two rule-based factoid question answering systems, showing the ability of an
agent to interact with an existing knowledge base; a conversational agent, able to be trained on any pair of sentences
by using deep learning; finally, we explore in this context the impact of micro-services on system performance.

Hi, how are you?

What color is the sky?

What color is fire?

I wear a blue jeans. What color do my jeans
have?

Tell me a joke!

Are you a man or a woman?

Do you think war is good?

good

blue

red

i m not a fan

i m not a joke

i m not a woman

i don t think so

In a second project we approached the same problem - automatically
answering factoid questions about movies - with different tools and a
different focus. We developed a system that keeps track of the context
of the current conversation and is able to answer follow-up questions.

Imagine a conversation where you are talking about a specific actor
and want to know his date of birth. Instead of restating the title of the
movie, you will probably just ask "Who is the director of this movie?"
and expect your dialogue partner to remember which movie you were
talking about. We present a simple approach to resolve this kind of
state dependency in certain scenarios, by simply combining database
queries.

System Description

System Description
 • Rasa NLU:
 Entity extraction and intent classification.
 Input: Show me movies by Clint Eastwood!
 Intent: moviesOfDirector
 Entities: (Clint, name), (Eastwood, familyName)

System Description

Results
In contrast to the other presented chatbots, this one does not
extract the information for a response from a given knowledge
base, but learns how to answer questions in general. This makes
it hard to evaluate the performance of the chatbot. We think the
fact that the model learns to give sound responses, which fit the
type of the question, is exciting by itself. Also, in many cases the
system actually gives correct or interesting responses (see
examples). Example questions (left) and the answers of our chatbot (right).

Intent: moviesOfYear
Entity: 2016 (ReleaseYear)

This chatbot demonstrates a way to implement a natural
language interface to structured information. To the right you
can see one example from the movie domain (flow chart) and
three examples on geographical information.

Rasa NLU

SPARQL

Database Query

Only the ones with Tom Cruise.

Intent: ?
Entity: Tom (name)
 Cruise (familyName)

SELECT ?movie_name WHERE {
 ?movie releaseDate: "2016"
 ?movie mname: ?movie_name }

SELECT ?movie_name WHERE {
 ?movie releaseDate: "2016" .
 ?movie mname: ?movie_name .
 ?movie starring: ?actor .
 ?actor fname: "Tom" .
 ?actor lname: "Cruise" }

Context

Who directed Inception?

Response: Christopher Nolan

Predicate: directed
Object: Inception

SELECT d.name
FROM Movie m, Director d
WHERE m.title = 'Inception'
 AND m.id = d.mid

PoS Tagging

SODA

Database Request

Generate Response

 • Context Tracking:
We keep track of the context by combining the current SPARQL
query with the previous one. E.g. if the previous query asked
only for movies from a specific director, we can keep this filter
for the new query as well.
It is not obvious, when we want use this context and when to
treat a new query independently. We decided to only use the
context when the current input shows no clear intent.

We implemented three different versions of a chatbot
and investigated how suitable each approach is in
different settings. The three versions were:

Results
We performed experiments in four different settings:

Experiment 1: High workload, complex queries

Experiment 2: Low workload, complex queries

Experiment 3: High workload, simple queries

Experiment 4: Low workload, simple queries

Low or high workload: The chatbot is confronted with 2 or 100
queries per second respectively.

Simple or complex queries: Queries filtering by one or multiple
criteria (e.g. "Show me action movies from 2016") respectively.

Component diagram of the microservice architecture with aggregate data interface.

The atomic variant replaces the IMDb service by separate interfaces for different

kinds of requests (get_movies_by_director, get_movies_by_genre,...).

Our results show that the performance of each architecture
strongly depends on the setting. In particular splitting the data-
interface into atomic services, requires an application-level-join for
complex queries. This results in a significant drop in performance.
Overall, we conclude that there is no general answer to the
question monolith vs. microservices. The appropriate architecture
depends on the requirements of the application.

Part-of-Speech Tagging (Stanford CoreNLP):
We first extract the subject, object and predicate from the input sentence.
We also use synonyms for these words.

Bag-of-Words similarity (Gensim):
We compare the input sentence to a set of known questions. If we find a
match, we can directly infer the question type.

Simple Object Data Access (SODA):
SODA allows to search an entire database for keywords. They are
matched to the database's metadata and transformed into an SQL query.
We pass the previously found keywords (e.g. subject and predicate) to
SODA and use the extracted data to generate our response.

Database:
We use the well known knowledge bases Freebase and DBpedia as our
information sources.

Client Webserver

Context Service API Gateway API.ai

Context

IMDb service IMDb-Database

set_entity
get_entity

SQL send_question

get_answer

SQL

parse_question

Where is London?

What ist the country of Dallas?

In which country is Salzburg

United Kingdom

United States

Austria

1) a classical monolithic implementation.

2) a microservice implementation with an aggregated
 data interface (few services, diagram).

3) a microservice implementation with atomic data
 access (more services).

Word embeddings:
The input sentence is transformed into a sequence of word vectors.

Sequence-to-sequence model:
The model consists of two long short-term memory networks (LSTMs): an encoder, which maps the input
sequence to a thought vector, and a decoder, which maps the thought vector to the output sentence. The
encoder and decoder are trained together on a set of training dialogues.

Training set:
We trained the model once on a set of reddit.com comments
and once on the OpenSubtitles dataset. Empirically the
results obtained from the OpenSubtitles set were more
convincing.

Example questions (left) and the answers of our chatbot (right).

Results

